diff --git a/src/layers/conv.jl b/src/layers/conv.jl index 46b63214..216957a7 100644 --- a/src/layers/conv.jl +++ b/src/layers/conv.jl @@ -12,8 +12,17 @@ expand(N, i::Integer) = ntuple(_ -> i, N) Standard convolutional layer. `size` should be a tuple like `(2, 2)`. `in` and `out` specify the number of input and output channels respectively. -Data should be stored in WHCN order. In other words, a 100×100 RGB image would -be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array. +Example: Applying Conv layer to a 1-channel input using a 2x2 window size, + giving us a 16-channel output. Output is activated with ReLU. + + size = (2,2) + in = 1 + out = 16 + Conv((2, 2), 1=>16, relu) + +Data should be stored in WHCN order (width, height, # channels, # batches). +In other words, a 100×100 RGB image would be a `100×100×3×1` array, +and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad`, `stride` and `dilation`. """