pulled tracker from upstream

This commit is contained in:
Dhairya Gandhi 2018-09-11 18:30:24 +05:30
parent 0b440f16ff
commit d933f2079b
6 changed files with 100 additions and 47 deletions

View File

@ -19,8 +19,8 @@ export Tracker, TrackedArray, TrackedVector, TrackedMatrix, param
include("optimise/Optimise.jl")
using .Optimise
using .Optimise: @epochs
export SGD, Descent, ADAM, AdaMax, Momentum, Nesterov,
RMSProp, ADAGrad, ADADelta, AMSGrad
export Descent, ADAM, Momentum, Nesterov,
RMSProp, update!
include("utils.jl")
include("onehot.jl")

View File

@ -1,7 +1,7 @@
module Optimise
export train!,
SGD, Descent, ADAM, AdaMax, Momentum, Nesterov, RMSProp, ADAGrad, ADADelta, AMSGrad
Descent, ADAM, Momentum, Nesterov, RMSProp
include("optimisers.jl")
include("train.jl")

View File

@ -27,14 +27,14 @@ Gradient descent with learning rate `η` and momentum `ρ`.
mutable struct Momentum
eta::Float64
rho::Float64
velocity::ObjectIdDict
velocity::IdDict
end
Momentum(η, ρ = 0.9) = Momentum(η, ρ, ObjectIdDict())
Momentum(η, ρ = 0.9) = Momentum(η, ρ, IdDict())
function update!(o::Momentum, x, Δ)
η, ρ = o.eta, o.rho
v = @get!(o.velocity, x, zero(x))::typeof(x)
v = get!(o.velocity, x, zero(x))::typeof(x)
@. v = ρ * v - η * Δ
@. Δ = -v
end
@ -47,14 +47,14 @@ Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
mutable struct Nesterov
eta::Float64
rho::Float64
velocity::ObjectIdDict
velocity::IdDict
end
Nesterov(η, ρ = 0.9) = Nesterov(η, ρ, ObjectIdDict())
Nesterov(η, ρ = 0.9) = Nesterov(η, ρ, IdDict())
function update!(o::Nesterov, x, Δ)
η, ρ = o.eta, o.rho
v = @get!(o.velocity, x, zero(x))::typeof(x)
v = get!(o.velocity, x, zero(x))::typeof(x)
d = @. ρ^2 * v - (1+ρ) * η * Δ
@. v = ρ*v - η*Δ
@. Δ = -d
@ -70,14 +70,14 @@ choice for recurrent networks.
mutable struct RMSProp
eta::Float64
rho::Float64
acc::ObjectIdDict
acc::IdDict
end
RMSProp(η = 0.001, ρ = 0.9) = RMSProp(η, ρ, ObjectIdDict())
RMSProp(η = 0.001, ρ = 0.9) = RMSProp(η, ρ, IdDict())
function update!(o::RMSProp, x, Δ)
η, ρ = o.eta, o.rho
acc = @get!(o.acc, x, zero(x))::typeof(x)
acc = get!(o.acc, x, zero(x))::typeof(x)
@. acc = ρ * acc + (1 - ρ) * Δ^2
@. Δ *= η / (acc + ϵ)
end
@ -90,14 +90,14 @@ end
mutable struct ADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::ObjectIdDict
state::IdDict
end
ADAM(η = 0.001, β = (0.9, 0.999)) = ADAM(η, β, ObjectIdDict())
ADAM(η = 0.001, β = (0.9, 0.999)) = ADAM(η, β, IdDict())
function update!(o::ADAM, x, Δ)
η, β = o.eta, o.beta
mt, vt, βp = @get!(o.state, x, (zero(x), zero(x), β))
mt, vt, βp = get!(o.state, x, (zero(x), zero(x), β))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
@. Δ = mt / (1 - βp[1]) / ((vt / (1 - βp[2])) + ϵ) * η

View File

@ -1,23 +1,27 @@
module Tracker
using MacroTools
using MacroTools: @q, @forward
import Base: ==
export TrackedArray, TrackedVector, TrackedMatrix, param, back!
export TrackedArray, TrackedVector, TrackedMatrix, Params, param, back!
tracker(x) = nothing
istracked(x) = tracker(x) nothing
isleaf(x) = !istracked(x) || isleaf(tracker(x))
data(x) = istracked(x) ? data(tracker(x)) : x
grad(x) = grad(tracker(x))
grad(::Nothing) = nothing
data(x) = x
struct Call{F,As<:Tuple}
func::F
args::As
end
Call(f, args...) = Call{typeof(f),typeof(args)}(f, args)
Call(f::F, args::T) where {F,T} = Call{F,T}(f, args)
Call() = Call(nothing, ())
# When deserialising, the object_id changes
a::Call == b::Call = a.func == b.func && a.args == b.args
@ -28,33 +32,80 @@ mutable struct Tracked{T}
ref::UInt32
f::Call
isleaf::Bool
data::T
grad::T
Tracked{T}(f::Call, data::T) where T = new(0, f, false, data)
Tracked{T}(f::Call, data::T, grad::T) where T = new(0, f, false, data, grad)
Tracked{T}(f::Call{Void}, data::T, grad::T) where T = new(0, f, true, data, grad)
Tracked{T}(f::Call) where T = new(0, f, false)
Tracked{T}(f::Call, grad::T) where T = new(0, f, false, grad)
Tracked{T}(f::Call{Nothing}, grad::T) where T = new(0, f, true, grad)
end
Tracked(f::Call, x) = Tracked{typeof(x)}(f, x)
Tracked(f::Call, x, Δ) = Tracked{typeof(x)}(f, x, Δ)
track(f::Call, x) = Tracked(f, x)
track(f::Call) = track(f, f())
track(f, xs...) = track(Call(f, xs...))
istracked(x::Tracked) = true
isleaf(x::Tracked) = x.f == Call(nothing)
data(x::Tracked) = x.data
isleaf(x::Tracked) = x.f == Call()
grad(x::Tracked) = x.grad
track(f::Call, x) = Tracked{typeof(x)}(f)
function _forward end
function track(f::F, xs...; kw...) where F
y, back = _forward(f, xs...; kw...)
track(Call(back, tracker.(xs)), y)
end
macro grad(ex)
@capture(shortdef(ex), (name_(args__) = body_) |
(name_(args__) where {T__} = body_)) || error("Need a function definition")
T == nothing && (T = [])
isexpr(name, :(::)) || (name = :(::typeof($name)))
insert!(args, 1+isexpr(args[1], :parameters) , name)
@q(Tracker._forward($(args...)) where $(T...) = $body) |> esc
end
function update!(x, Δ)
x.data .+= data(Δ)
tracker(x).grad .= 0
return x
end
include("idset.jl")
include("back.jl")
include("scalar.jl")
include("array.jl")
include("numeric.jl")
"""
hook(f, x) -> x
Hook into gradient backpropagation. `x` is unmodified, but when backpropagating
`f` will be applied to the incoming gradient. For example, `hook(-, x)` will reverse
the sign of the gradient applied to `x`."""
hook(f, x) = istracked(x) ? track(hook, f, x) : x
@grad hook(f, x) = data(x), Δ -> (nothing, f(Δ))
"""
checkpoint(f, args...)
Behaves like `f(args...)`, but avoids storing the intermediate values needed for
calculating gradients. Instead, `f(args...)` will be called again during the
backward pass. This can be used to save memory in larger models.
"""
checkpoint(f, args...) = track(checkpoint, f, args...)
@grad function checkpoint(f, args...)
data(f(args...)), function (Δ)
y, back = forward(f, args...)
(nothing, back(Δ)...)
end
end
nobacksies(f, x) = track(nobacksies, f, x)
nobacksies(f, xs::Tuple) = map(x -> nobacksies(f, x), xs)
@grad nobacksies(f, x) = data(x), Δ -> error("Nested AD not defined for $f")
param(x::Number) = TrackedReal(float(x))
param(xs::AbstractArray) = TrackedArray(float.(xs))
@grad identity(x) = data(x), Δ -> (Δ,)
param(x::TrackedReal) = track(identity, x)
param(x::TrackedArray) = track(identity, x)
import NNlib.cudata
import Adapt.adapt

View File

@ -87,14 +87,11 @@ Base.adjoint(xs::TrackedArray) = track(adjoint, xs)
@grad transpose(xs) = transpose(data(xs)), Δ -> (reshape(transpose(Δ), size(xs)),)
@grad adjoint(xs) = data(xs)', Δ -> (reshape(Δ', size(xs)),)
Base.repeat(xs::TrackedArray; kw...) = track(repeat, xs; kw...)
@grad function repeat(xs; inner=ntuple(x->1, ndims(xs)), outer=ntuple(x->1, ndims(xs)))
repeat(data(xs), inner = inner, outer = outer), function (Δ)
Δ′ = zero(xs)
S = size(xs)
# Loop through each element of Δ, calculate source dimensions, accumulate into Δ′
for (dest_idx, val) in pairs(IndexCartesian(), data(Δ))
# First, round dest_idx[dim] to nearest gridpoint defined by inner[dim], then
@ -105,7 +102,6 @@ Base.repeat(xs::TrackedArray; kw...) = track(repeat, xs; kw...)
(nobacksies(:repeat, Δ′),)
end
end
for f in [:vcat, :hcat]
UArray = :(Union{TrackedArray,Vector,Matrix,Adjoint,Transpose})
@eval begin
@ -361,7 +357,7 @@ end
track(Call(back, tracker.(args)), y)
end
using Base.Broadcast: BroadcastStyle, ArrayStyle, Broadcasted, broadcasted
using Base.Broadcast: BroadcastStyle, ArrayStyle, Broadcasted, broadcasted, cat_nested
struct TrackedStyle <: BroadcastStyle end
@ -385,6 +381,10 @@ end
using Requires
Base.Broadcast.cat_nested(t::Base.Broadcast.Broadcasted, rest...) = (cat_nested(t.args...)..., cat_nested(rest...)...)
Base.Broadcast.cat_nested(t::Any, rest...) = (t, cat_nested(rest...)...)
Base.Broadcast.cat_nested() = ()
# https://github.com/FluxML/Flux.jl/issues/353
@init Requires.isprecompiling() || @eval Base.Broadcast begin
function flatten(bc::Broadcasted{Style}) where {Style}

View File

@ -3,16 +3,18 @@ using Flux.Tracker
using Test
@testset "Optimise" begin
w = randn(10, 10)
@testset for Opt in [SGD, Nesterov, Momentum, ADAM, AdaMax, RMSProp, ps -> ADAGrad(ps, 0.1), ADADelta, AMSGrad, NADAM]
w = param(randn(10, 10))
loss(x) = Flux.mse(w*x, w*x)
opt = Opt([w])
for t=1:10^5
l = loss(rand(10))
back!(l)
opt()
end
@test Flux.mse(w, w) < 0.01
@testset for Opt in [Descent, Nesterov, RMSProp, ADAM, Momentum]
w = param(randn(10, 10))
delta = param(Tracker.similar(w))
loss(x) = Flux.mse(w*x, w*x)
opt = Opt(0.1)
for t=1:10^5
l = loss(rand(10))
back!(l)
update!(opt, w.data, delta.data)
w .-= delta
end
@test Flux.mse(w, w) < 0.01
end
end
@ -23,7 +25,7 @@ end
Flux.train!(() -> (sleep(0.1); i += 1; l),
Iterators.repeated((), 100),
()->(),
cb = Flux.throttle(() -> (i > 3 && stop()), 1))
cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
@test 3 < i < 50
end