use ZeroType
This commit is contained in:
parent
a801fcb9e7
commit
dced8c04e5
|
@ -21,7 +21,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches).
|
|||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||||
and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct Conv{N,M,F,A,V}
|
||||
σ::F
|
||||
|
@ -30,34 +30,32 @@ struct Conv{N,M,F,A,V}
|
|||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
use_bias::Bool
|
||||
end
|
||||
|
||||
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||
function Conv(w::AbstractArray{T,N}, b::Union{Nothing, ZeroType, AbstractVector{T}}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return Conv(σ, w, b, stride, pad, dilation, use_bias)
|
||||
b = b isa Nothing ? ZeroType((size(w, ndims(w)), )) : b
|
||||
return Conv(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
|
||||
Conv(init(k..., ch...), zeros(ch[2]), σ,
|
||||
stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
|
||||
function Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N
|
||||
b = use_bias ? zeros(ch[2]) : ZeroType((ch[2],))
|
||||
Conv(init(k..., ch...), b, σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
end
|
||||
|
||||
@functor Conv
|
||||
|
||||
function (c::Conv)(x::AbstractArray)
|
||||
# TODO: breaks gpu broadcast :(
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
if c.use_bias
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(conv(x, c.weight, cdims) .+ b)
|
||||
else
|
||||
c.σ.(conv(x, c.weight, cdims))
|
||||
end
|
||||
σ.(conv(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::Conv)
|
||||
|
@ -83,7 +81,7 @@ Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
|||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct ConvTranspose{N,M,F,A,V}
|
||||
σ::F
|
||||
|
@ -92,21 +90,23 @@ struct ConvTranspose{N,M,F,A,V}
|
|||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
use_bias::Bool
|
||||
end
|
||||
|
||||
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||
function ConvTranspose(w::AbstractArray{T,N}, b::Union{Nothing, ZeroType, AbstractVector{T}}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return ConvTranspose(σ, w, b, stride, pad, dilation, use_bias)
|
||||
b = b isa Nothing ? ZeroType((size(w, ndims(w)), )) : b
|
||||
return ConvTranspose(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
|
||||
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
|
||||
stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
|
||||
function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N
|
||||
b = use_bias ? zeros(ch[2]) : ZeroType((ch[2], ))
|
||||
ConvTranspose(init(k..., reverse(ch)...), b, σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
end
|
||||
|
||||
@functor ConvTranspose
|
||||
|
||||
|
@ -126,13 +126,9 @@ end
|
|||
|
||||
function (c::ConvTranspose)(x::AbstractArray)
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = conv_transpose_dims(c, x)
|
||||
if c.use_bias
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
||||
else
|
||||
c.σ.(∇conv_data(x, c.weight, cdims))
|
||||
end
|
||||
σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::ConvTranspose)
|
||||
|
@ -158,7 +154,7 @@ Note that `out` must be an integer multiple of `in`.
|
|||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct DepthwiseConv{N,M,F,A,V}
|
||||
σ::F
|
||||
|
@ -167,41 +163,37 @@ struct DepthwiseConv{N,M,F,A,V}
|
|||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
use_bias::Bool
|
||||
end
|
||||
|
||||
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||
function DepthwiseConv(w::AbstractArray{T,N}, b::Union{Nothing, ZeroType, AbstractVector{T}}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return DepthwiseConv(σ, w, b, stride, pad, dilation, use_bias)
|
||||
b = b isa Nothing ? ZeroType((size(w, ndims(w)), )) : b
|
||||
return DepthwiseConv(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N
|
||||
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
|
||||
b = use_bias ? zeros(ch[2]) : ZeroType((ch[2], ))
|
||||
return DepthwiseConv(
|
||||
init(k..., div(ch[2], ch[1]), ch[1]),
|
||||
zeros(ch[2]),
|
||||
b,
|
||||
σ;
|
||||
stride = stride,
|
||||
pad = pad,
|
||||
dilation = dilation,
|
||||
use_bias = use_bias
|
||||
dilation = dilation
|
||||
)
|
||||
end
|
||||
|
||||
@functor DepthwiseConv
|
||||
|
||||
function (c::DepthwiseConv)(x)
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
if c.use_bias
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
||||
else
|
||||
c.σ.(depthwiseconv(x, c.weight, cdims))
|
||||
end
|
||||
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::DepthwiseConv)
|
||||
|
@ -236,7 +228,7 @@ Data should be stored in WHCN order (width, height, # channels, # batches).
|
|||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||||
and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `use_bias`, `pad`, `stride` and `dilation`.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct CrossCor{N,M,F,A,V}
|
||||
σ::F
|
||||
|
@ -245,21 +237,23 @@ struct CrossCor{N,M,F,A,V}
|
|||
stride::NTuple{N,Int}
|
||||
pad::NTuple{M,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
use_bias::Bool
|
||||
end
|
||||
|
||||
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1, use_bias = true) where {T,N}
|
||||
function CrossCor(w::AbstractArray{T,N}, b::Union{Nothing, ZeroType, AbstractVector{T}}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||||
stride = expand(Val(N-2), stride)
|
||||
pad = expand(Val(2*(N-2)), pad)
|
||||
dilation = expand(Val(N-2), dilation)
|
||||
return CrossCor(σ, w, b, stride, pad, dilation, use_bias)
|
||||
b = b isa Nothing ? ZeroType((size(w, ndims(w)), )) : b
|
||||
return CrossCor(σ, w, b, stride, pad, dilation)
|
||||
end
|
||||
|
||||
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N =
|
||||
CrossCor(init(k..., ch...), zeros(ch[2]), σ,
|
||||
stride = stride, pad = pad, dilation = dilation, use_bias = use_bias)
|
||||
function CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, use_bias = true) where N
|
||||
b = use_bias ? zeros(ch[2]) : ZeroType((ch[2],))
|
||||
CrossCor(init(k..., ch...), b, σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
end
|
||||
|
||||
@functor CrossCor
|
||||
|
||||
|
@ -271,13 +265,9 @@ end
|
|||
function (c::CrossCor)(x::AbstractArray)
|
||||
# TODO: breaks gpu broadcast :(
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
if c.use_bias
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(crosscor(x, c.weight, cdims) .+ b)
|
||||
else
|
||||
c.σ.(crosscor(x, c.weight, cdims))
|
||||
end
|
||||
σ.(crosscor(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::CrossCor)
|
||||
|
|
10
src/utils.jl
10
src/utils.jl
|
@ -139,6 +139,16 @@ function throttle(f, timeout; leading=true, trailing=false)
|
|||
end
|
||||
end
|
||||
|
||||
import Base: +, reshape, size
|
||||
struct ZeroType{T} <: Number
|
||||
size::T
|
||||
end
|
||||
+(a::Number, ::ZeroType) = a
|
||||
+(::ZeroType, a::Number) = a
|
||||
size(xs::ZeroType) = xs.size
|
||||
reshape(::ZeroType, args...) = ZeroType(args)
|
||||
@adjoint reshape(xs::ZeroType, dims...) = ZeroType(dims), Δ -> (ZeroType(size(xs)), map(_ -> nothing, dims)...)
|
||||
|
||||
"""
|
||||
@jit ...
|
||||
|
||||
|
|
|
@ -28,7 +28,11 @@ end
|
|||
op = bias(ip)
|
||||
@test sum(op) == prod(size(op))
|
||||
|
||||
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3), use_bias = false)
|
||||
bias = Conv(ones(Float32, 2, 2, 1, 3), Flux.ZeroType((3,)))
|
||||
op = bias(ip)
|
||||
@test sum(op) === 0.f0
|
||||
|
||||
bias = Conv(ones(Float32, 2, 2, 1, 3), nothing)
|
||||
op = bias(ip)
|
||||
@test sum(op) === 0.f0
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue