conv docs
This commit is contained in:
parent
269d8f36b9
commit
e3577d759c
|
@ -5,6 +5,7 @@ These core layers form the foundation of almost all neural networks.
|
|||
```@docs
|
||||
Chain
|
||||
Dense
|
||||
Conv2D
|
||||
```
|
||||
|
||||
## Recurrent Layers
|
||||
|
|
|
@ -1,3 +1,15 @@
|
|||
"""
|
||||
Conv2D(size, in=>out)
|
||||
Conv2d(size, in=>out, relu)
|
||||
|
||||
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
|
||||
Data should be stored in HWCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct Conv2D{F,A}
|
||||
σ::F
|
||||
weight::A
|
||||
|
|
Loading…
Reference in New Issue