conv docs
This commit is contained in:
parent
269d8f36b9
commit
e3577d759c
@ -5,6 +5,7 @@ These core layers form the foundation of almost all neural networks.
|
|||||||
```@docs
|
```@docs
|
||||||
Chain
|
Chain
|
||||||
Dense
|
Dense
|
||||||
|
Conv2D
|
||||||
```
|
```
|
||||||
|
|
||||||
## Recurrent Layers
|
## Recurrent Layers
|
||||||
|
@ -1,3 +1,15 @@
|
|||||||
|
"""
|
||||||
|
Conv2D(size, in=>out)
|
||||||
|
Conv2d(size, in=>out, relu)
|
||||||
|
|
||||||
|
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||||
|
`in` and `out` specify the number of input and output channels respectively.
|
||||||
|
|
||||||
|
Data should be stored in HWCN order. In other words, a 100×100 RGB image would
|
||||||
|
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||||
|
|
||||||
|
Takes the keyword arguments `pad` and `stride`.
|
||||||
|
"""
|
||||||
struct Conv2D{F,A}
|
struct Conv2D{F,A}
|
||||||
σ::F
|
σ::F
|
||||||
weight::A
|
weight::A
|
||||||
|
Loading…
Reference in New Issue
Block a user