Merge pull request #311 from tejank10/conv_transpose
2D Conv transpose support
This commit is contained in:
commit
e8b2ec6f67
|
@ -1,5 +1,3 @@
|
|||
# This file is machine-generated - editing it directly is not advised
|
||||
|
||||
[[AbstractTrees]]
|
||||
deps = ["Markdown", "Test"]
|
||||
git-tree-sha1 = "6621d9645702c1c4e6970cc6a3eae440c768000b"
|
||||
|
@ -53,9 +51,9 @@ version = "0.2.0"
|
|||
|
||||
[[Compat]]
|
||||
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "ec61a16eed883ad0cfa002d7489b3ce6d039bb9a"
|
||||
git-tree-sha1 = "49269e311ffe11ac5b334681d212329002a9832a"
|
||||
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
|
||||
version = "1.4.0"
|
||||
version = "1.5.1"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections", "Random", "Serialization", "Test"]
|
||||
|
@ -84,7 +82,7 @@ uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
|||
version = "0.0.8"
|
||||
|
||||
[[Distributed]]
|
||||
deps = ["Random", "Serialization", "Sockets"]
|
||||
deps = ["LinearAlgebra", "Random", "Serialization", "Sockets"]
|
||||
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
||||
|
||||
[[FixedPointNumbers]]
|
||||
|
@ -100,7 +98,7 @@ uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
|||
version = "0.10.2"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["Markdown"]
|
||||
deps = ["LinearAlgebra", "Markdown"]
|
||||
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
|
||||
|
||||
[[Juno]]
|
||||
|
@ -149,9 +147,11 @@ uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
|||
|
||||
[[NNlib]]
|
||||
deps = ["Libdl", "LinearAlgebra", "MacroTools", "Requires", "Test"]
|
||||
git-tree-sha1 = "51330bb45927379007e089997bf548fbe232589d"
|
||||
git-tree-sha1 = "5a8ed87d61b1ccb71d99235c2a96287addebbb9f"
|
||||
repo-rev = "master"
|
||||
repo-url = "https://github.com/FluxML/NNlib.jl.git"
|
||||
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
version = "0.4.3"
|
||||
version = "0.4.3+"
|
||||
|
||||
[[NaNMath]]
|
||||
deps = ["Compat"]
|
||||
|
@ -259,7 +259,7 @@ uuid = "30578b45-9adc-5946-b283-645ec420af67"
|
|||
version = "0.4.0"
|
||||
|
||||
[[UUIDs]]
|
||||
deps = ["Random", "SHA"]
|
||||
deps = ["Random"]
|
||||
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
|
||||
|
||||
[[Unicode]]
|
||||
|
|
|
@ -6,7 +6,7 @@ using Base: tail
|
|||
using MacroTools, Juno, Requires, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, MaxPool, MeanPool,
|
||||
export Chain, Dense, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
|
||||
DepthwiseConv, Dropout, LayerNorm, BatchNorm,
|
||||
params, mapleaves, cpu, gpu, f32, f64
|
||||
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
using NNlib: conv, depthwiseconv
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
|
||||
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
|
||||
|
||||
|
@ -57,6 +57,54 @@ end
|
|||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
|
||||
"""
|
||||
ConvTranspose(size, in=>out)
|
||||
ConvTranspose(size, in=>out, relu)
|
||||
|
||||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `out` specify the number of input and output channels respectively.
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||||
"""
|
||||
struct ConvTranspose{N,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
dilation::NTuple{N,Int}
|
||||
end
|
||||
|
||||
ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0, dilation = 1) where {T,N} =
|
||||
ConvTranspose(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
|
||||
|
||||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||||
ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
|
||||
@treelike ConvTranspose
|
||||
|
||||
function (c::ConvTranspose)(x::AbstractArray)
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(∇conv_data(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::ConvTranspose)
|
||||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||||
l.σ == identity || print(io, ", ", l.σ)
|
||||
print(io, ")")
|
||||
end
|
||||
|
||||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
invoke(a, Tuple{AbstractArray}, x)
|
||||
|
||||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||||
a(T.(x))
|
||||
"""
|
||||
DepthwiseConv(size, in)
|
||||
DepthwiseConv(size, in=>mul)
|
||||
|
|
|
@ -364,7 +364,7 @@ x::TrackedVector * y::TrackedVector = track(*, x, y)
|
|||
# NNlib
|
||||
|
||||
using NNlib
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, depthwiseconv, maxpool, meanpool
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, ∇conv_data, depthwiseconv, maxpool, meanpool
|
||||
|
||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||
|
||||
|
@ -391,8 +391,18 @@ conv(x::TrackedArray, w::AbstractArray; kw...) = track(conv, x, w; kw...)
|
|||
@grad conv(x, w; kw...) =
|
||||
conv(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:conv,
|
||||
(NNlib.∇conv_data(data.((Δ, x, w))...; kw...),
|
||||
NNlib.∇conv_filter(data.((Δ, x, w))...; kw...)))
|
||||
(NNlib.∇conv_data(data.((Δ, w))...; size=size(x), kw...),
|
||||
NNlib.∇conv_filter(data.((Δ, x))...; size=size(w), kw...)))
|
||||
|
||||
∇conv_data(x::TrackedArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
∇conv_data(x::AbstractArray, w::TrackedArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
∇conv_data(x::TrackedArray, w::AbstractArray; kw...) = track(∇conv_data, x, w; kw...)
|
||||
|
||||
@grad ∇conv_data(x, w; kw...) =
|
||||
∇conv_data(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:conv,
|
||||
(NNlib.conv(data.((Δ, w))...; size=size(x), kw...),
|
||||
NNlib.∇conv_filter(data.((x, Δ))...; size=size(w), kw...)))
|
||||
|
||||
maxpool(x::TrackedArray, k; kw...) = track(maxpool, x, k; kw...)
|
||||
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using Flux
|
||||
using Flux.Tracker, Test, NNlib
|
||||
using Flux.Tracker: TrackedReal, gradient, gradcheck, grad, checkpoint, forwarddiff
|
||||
using NNlib: conv, depthwiseconv
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
using Printf: @sprintf
|
||||
using LinearAlgebra: diagm, dot, LowerTriangular, norm
|
||||
using Statistics: mean, std
|
||||
|
@ -185,12 +185,20 @@ end
|
|||
2y + x
|
||||
end
|
||||
|
||||
@test gradtest(conv, rand(10, 3, 2), randn(Float64,2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64,2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 3, 2), randn(Float64, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 3, 2), randn(Float64, 2, 2, 3, 2))
|
||||
@test gradtest(conv, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 3, 2))
|
||||
|
||||
@test gradtest(∇conv_data, rand(10, 3, 2), randn(Float64, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64,2, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 2, 3))
|
||||
|
||||
@test gradtest(depthwiseconv, rand(10,10,3,2), randn(2, 2, 2, 3))
|
||||
|
||||
@test gradtest(∇conv_data, rand(10, 3, 2), randn(Float64, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64, 2, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64, 2, 2, 2, 2, 3))
|
||||
|
||||
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> maxpool(x, (2,2,2)), rand(10, 10, 10, 3, 2))
|
||||
|
||||
|
|
Loading…
Reference in New Issue