remove mxnet for now

This commit is contained in:
Mike J Innes 2016-10-25 17:37:37 +01:00
parent 18502158f0
commit ee0c5ae14e
4 changed files with 0 additions and 186 deletions

View File

@ -1,9 +1,5 @@
# TODO: load backends lazily
# include("mxnet/mxnet.jl")
# using .MX
# export mxnet
include("tensorflow/tensorflow.jl")
using .TF
export tf

View File

@ -1,75 +0,0 @@
cvalue(x) = x
cvalue(c::Constant) = c.value
cvalue(v::Vertex) = cvalue(value(v))
graph(vars, model, args...) = node(model, args...)
graph(vars, x::mx.SymbolicNode) = x
# TODO: detect parameters used more than once
function graph{T<:AArray}(vars, p::Flux.Param{T})
value = p.x
id = gensym()
vars[id] = value
return mx.Variable(id)
end
function graph(vars, model::Model, args...)
g = Flux.graph(model)
g = Flow.mapconst(g) do x
!isa(x, Flux.ModelInput) ? x :
isa(x.name, Integer) ? args[x.name] : getfield(model, x.name)
end
postwalk(g) do v
vertex(graph(vars, cvalue(v), cvalue.(inputs(v))...))
end |> value
end
type SoftmaxOutput
name::Symbol
end
function rewrite_softmax(model, name)
model == softmax && return SoftmaxOutput(name)
g = Flux.graph(model)
(g == nothing || value(g) softmax || Flow.nin(g) 1) && error("mx.FeedForward models must end with `softmax`")
return Flux.Capacitor(vertex(SoftmaxOutput(name), g[1]))
end
# Built-in implemenations
node(::typeof(*), args...) = mx.dot(reverse(args)...)
node(::typeof(+), args...) = mx.broadcast_plus(args...)
node(::typeof(σ), x) = mx.Activation(data = x, act_type = :sigmoid)
node(::typeof(relu), x) = mx.Activation(data = x, act_type=:relu)
node(::typeof(tanh), x) = mx.Activation(data = x, act_type=:tanh)
node(::typeof(flatten), x) = mx.Flatten(data = x)
node(::typeof(softmax), xs) =
mx.broadcast_div(exp(xs), mx.Reshape(mx.sum(exp(xs)), shape = (1,1)))
node(s::SoftmaxOutput, xs) = mx.SoftmaxOutput(data = xs, name = s.name)
node(::typeof(cat), dim::Integer, a...) = mx.Concat(a..., dim = dim)
node(::typeof(vcat), a...) = node(cat, 1, a...)
graph(vars, ::Input, x) = x
graph(vars, c::Conv, x) =
mx.Convolution(data = x,
kernel = c.size,
num_filter = c.features,
stride = c.stride)
graph(vars, p::MaxPool, x) =
mx.Pooling(data = x,
pool_type = :max,
kernel = p.size,
stride = p.stride)
# TODO: fix the initialisation issue
graph(vars, d::Dense, x) =
mx.FullyConnected(data = x,
num_hidden = size(d.W.x, 1),
weight = graph(vars, d.W),
bias = graph(vars, d.b))

View File

@ -1,97 +0,0 @@
using MacroTools
type MXModel <: Model
model::Any
params::Dict{Symbol,Any}
grads::Dict{Symbol,Any}
exec::mx.Executor
end
Base.show(io::IO, m::MXModel) =
print(io, "MXModel($(m.model))")
mxdims(dims::NTuple) = reverse(dims)
mxdims(n::Integer) = mxdims((n,))
function tond!(nd::mx.NDArray, xs::AArray)
mx.copy_ignore_shape!(nd, xs')
nd
end
tond(xs::AArray) = tond!(mx.zeros(mxdims(size(xs))), xs)
fromnd(xs::mx.NDArray) = copy(xs)'
ndzero!(xs::mx.NDArray) = copy!(xs, mx.zeros(size(xs)))
function mxargs(args)
map(args) do kv
arg, value = kv
arg => tond(value)
end
end
function mxgrads(mxargs)
map(mxargs) do kv
arg, value = kv
arg => mx.zeros(size(value))
end
end
function load!(model::MXModel)
for (name, arr) in model.exec.arg_dict
haskey(model.params, name) && tond!(arr, model.params[name])
end
return model
end
function mxgraph(model, input; vars = true)
vars = vars ? Dict{Symbol,Any}() : nothing
node = graph(vars, model, mx.Variable(input))
return node, vars
end
function mxnet(model::Model, input)
node, vars = mxgraph(model, :input)
args = merge(mxargs(vars), Dict(:input => mx.zeros(mxdims(input))))
grads = mxgrads(args)
model = MXModel(model, vars, grads,
mx.bind(node, args = args,
args_grad = grads,
grad_req = mx.GRAD_ADD))
load!(model)
return model
end
function (model::MXModel)(input)
tond!(model.exec.arg_dict[:input], input)
mx.forward(model.exec, is_train = true)
fromnd(model.exec.outputs[1])
end
function Flux.back!(model::MXModel, Δ, x)
ndzero!(model.grads[:input])
mx.backward(model.exec, tond(Δ))
fromnd(model.grads[:input])
end
function Flux.update!(model::MXModel, η)
for (arg, grad) in zip(model.exec.arg_arrays, model.exec.grad_arrays)
mx.@nd_as_jl rw = (arg, grad) begin
arg .-= grad .* η
grad[:] = 0
end
end
return model
end
# MX FeedForward interface
function mx.FeedForward(model::Model; input = :data, label = :softmax, context = mx.cpu())
model = rewrite_softmax(model, label)
node, vars = mxgraph(model, input)
ff = mx.FeedForward(node, context = context)
ff.arg_params = mxargs(vars)
return ff
end

View File

@ -1,10 +0,0 @@
module MX
using MXNet, Flow, ..Flux
export mxnet
include("graph.jl")
include("model.jl")
end