diff --git a/examples/MNIST.jl b/examples/MNIST.jl index 70d26ee1..fbf61150 100644 --- a/examples/MNIST.jl +++ b/examples/MNIST.jl @@ -1,6 +1,6 @@ using Flux, MNIST -data = [(Vector{Float32}(trainfeatures(i)), onehot(Float32, trainlabel(i), 0:9)) for i = 1:60_000] +data = [(trainfeatures(i), onehot(trainlabel(i), 0:9)) for i = 1:60_000] train = data[1:50_000] test = data[50_001:60_000] @@ -16,7 +16,7 @@ model = tf(m) # An example prediction pre-training model(data[1][1]) -@time Flux.train!(model, train, test, η = 1e-3) +@time Flux.train!(model, train, test, η = 1e-4) # An example prediction post-training model(data[1][1]) diff --git a/src/backend/tensorflow/model.jl b/src/backend/tensorflow/model.jl index 970e5c97..f9eaa9cf 100644 --- a/src/backend/tensorflow/model.jl +++ b/src/backend/tensorflow/model.jl @@ -80,7 +80,8 @@ function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1, info("Epoch $e\n") @progress for (x, y) in train y, cur_loss, _ = run(m.session, vcat(m.output, Loss, minimize_op), - Dict(m.inputs[1]=>batchone(x), Y=>batchone(y))) + Dict(m.inputs[1] => batchone(convertel(Float32, x)), + Y => batchone(convertel(Float32, y)))) if i % 5000 == 0 @show y @show accuracy(m, test) diff --git a/src/utils.jl b/src/utils.jl index 3a36b861..d1b81347 100644 --- a/src/utils.jl +++ b/src/utils.jl @@ -2,7 +2,7 @@ export AArray const AArray = AbstractArray -initn(dims...) = randn(dims...)/10 +initn(dims...) = randn(dims...)/100 function train!(m, train, test = []; epoch = 1, batch = 10, η = 0.1) i = 0