merge with upstream
This commit is contained in:
commit
f540a0daf7
|
@ -10,6 +10,12 @@ MaxPool
|
|||
MeanPool
|
||||
```
|
||||
|
||||
## Additional Convolution Layers
|
||||
|
||||
```@docs
|
||||
DepthwiseConv
|
||||
```
|
||||
|
||||
## Recurrent Layers
|
||||
|
||||
Much like the core layers above, but can be used to process sequence data (as well as other kinds of structured data).
|
||||
|
|
|
@ -1,4 +1,4 @@
|
|||
using NNlib: conv, ∇conv_data
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
|
||||
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
|
||||
|
||||
|
@ -89,6 +89,55 @@ end
|
|||
|
||||
function Base.show(io::IO, l::ConvTranspose)
|
||||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
end
|
||||
|
||||
|
||||
"""
|
||||
DepthwiseConv(size, in)
|
||||
DepthwiseConv(size, in=>mul)
|
||||
DepthwiseConv(size, in=>mul, relu)
|
||||
|
||||
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||||
`in` and `mul` specify the number of input channels and channel multiplier respectively.
|
||||
In case the `mul` is not specified it is taken as 1.
|
||||
|
||||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||||
|
||||
Takes the keyword arguments `pad` and `stride`.
|
||||
"""
|
||||
struct DepthwiseConv{N,F,A,V}
|
||||
σ::F
|
||||
weight::A
|
||||
bias::V
|
||||
stride::NTuple{N,Int}
|
||||
pad::NTuple{N,Int}
|
||||
end
|
||||
|
||||
DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||||
stride = 1, pad = 0) where {T,N} =
|
||||
DepthwiseConv(σ, w, b, expand.(sub2(Val(N)), (stride, pad))...)
|
||||
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = initn,
|
||||
stride = 1, pad = 0) where N =
|
||||
DepthwiseConv(param(init(k..., 1, ch)), param(zeros(ch)), σ,
|
||||
stride = stride, pad = pad)
|
||||
|
||||
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn,
|
||||
stride::NTuple{N,Integer} = map(_->1,k),
|
||||
pad::NTuple{N,Integer} = map(_->0,k)) where N =
|
||||
DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ,
|
||||
stride = stride, pad = pad)
|
||||
|
||||
@treelike DepthwiseConv
|
||||
|
||||
function (c::DepthwiseConv)(x)
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
σ.(depthwiseconv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
|
||||
end
|
||||
|
||||
function Base.show(io::IO, l::DepthwiseConv)
|
||||
print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2])
|
||||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||||
l.σ == identity || print(io, ", ", l.σ)
|
||||
print(io, ")")
|
||||
|
|
|
@ -330,7 +330,8 @@ x::TrackedVector * y::TrackedVector = track(*, x, y)
|
|||
# NNlib
|
||||
|
||||
using NNlib
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, ∇conv_data, maxpool, meanpool
|
||||
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax,
|
||||
conv, ∇conv_data, depthwiseconv, maxpool, meanpool
|
||||
|
||||
softmax(xs::TrackedArray) = track(softmax, xs)
|
||||
|
||||
|
@ -340,6 +341,16 @@ logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
|
|||
|
||||
@grad logsoftmax(xs) = logsoftmax(data(xs)), Δ -> (nobacksies(:logsoftmax, ∇logsoftmax(data(Δ), data(xs))),)
|
||||
|
||||
depthwiseconv(x::TrackedArray, w::TrackedArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
depthwiseconv(x::AbstractArray, w::TrackedArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
depthwiseconv(x::TrackedArray, w::AbstractArray; kw...) = track(depthwiseconv, x, w; kw...)
|
||||
|
||||
@grad depthwiseconv(x, w; kw...) =
|
||||
depthwiseconv(data(x), data(w); kw...),
|
||||
Δ -> nobacksies(:depthwiseconv,
|
||||
(NNlib.∇depthwiseconv_data(data.((Δ, x, w))...; kw...),
|
||||
NNlib.∇depthwiseconv_filter(data.((Δ, x, w))...; kw...)))
|
||||
|
||||
conv(x::TrackedArray, w::TrackedArray; kw...) = track(conv, x, w; kw...)
|
||||
conv(x::AbstractArray, w::TrackedArray; kw...) = track(conv, x, w; kw...)
|
||||
conv(x::TrackedArray, w::AbstractArray; kw...) = track(conv, x, w; kw...)
|
||||
|
|
|
@ -60,14 +60,18 @@ for (M, f, arity) in DiffRules.diffrules()
|
|||
end
|
||||
end
|
||||
|
||||
# Work around zero(π) not working, for some reason
|
||||
_zero(::Irrational) = nothing
|
||||
_zero(x) = zero(x)
|
||||
|
||||
for (M, f, arity) in DiffRules.diffrules()
|
||||
arity == 2 || continue
|
||||
da, db = DiffRules.diffrule(M, f, :a, :b)
|
||||
f = :($M.$f)
|
||||
@eval begin
|
||||
@grad $f(a::TrackedReal, b::TrackedReal) = $f(data(a), data(b)), Δ -> (Δ * $da, Δ * $db)
|
||||
@grad $f(a::TrackedReal, b::Real) = $f(data(a), b), Δ -> (Δ * $da, zero(b))
|
||||
@grad $f(a::Real, b::TrackedReal) = $f(a, data(b)), Δ -> (zero(a), Δ * $db)
|
||||
@grad $f(a::TrackedReal, b::Real) = $f(data(a), b), Δ -> (Δ * $da, _zero(b))
|
||||
@grad $f(a::Real, b::TrackedReal) = $f(a, data(b)), Δ -> (_zero(a), Δ * $db)
|
||||
$f(a::TrackedReal, b::TrackedReal) = track($f, a, b)
|
||||
$f(a::TrackedReal, b::Real) = track($f, a, b)
|
||||
$f(a::Real, b::TrackedReal) = track($f, a, b)
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
using Flux
|
||||
using Flux.Tracker, Test, NNlib
|
||||
using Flux.Tracker: TrackedReal, gradcheck, grad, derivative, checkpoint
|
||||
using NNlib: conv, ∇conv_data
|
||||
using NNlib: conv, ∇conv_data, depthwiseconv
|
||||
using Printf: @sprintf
|
||||
using LinearAlgebra: Diagonal, dot, LowerTriangular, norm
|
||||
using Statistics: mean, std
|
||||
|
@ -185,6 +185,8 @@ end
|
|||
@test gradtest(∇conv_data, rand(10, 10, 3, 2), randn(Float64,2, 2, 2, 3))
|
||||
@test gradtest(∇conv_data, rand(10, 10, 10, 3, 2), randn(Float64,2, 2, 2, 2, 3))
|
||||
|
||||
@test gradtest(depthwiseconv, rand(10,10,3,2), randn(2, 2, 2, 3))
|
||||
|
||||
@test gradtest(x -> maxpool(x, (2,2)), rand(10, 10, 3, 2))
|
||||
@test gradtest(x -> maxpool(x, (2,2,2)), rand(10, 10, 10, 3, 2))
|
||||
|
||||
|
|
Loading…
Reference in New Issue