diff --git a/src/Flux.jl b/src/Flux.jl index 9a508002..f8db5553 100644 --- a/src/Flux.jl +++ b/src/Flux.jl @@ -23,7 +23,7 @@ include("core.jl") import .FluxCore: back!, update!, graph include("utils.jl") - +include("ops.jl") include("params.jl") include("compiler/code.jl") diff --git a/src/backend/tensorflow/graph.jl b/src/backend/tensorflow/graph.jl index b34e23a7..cf01de74 100644 --- a/src/backend/tensorflow/graph.jl +++ b/src/backend/tensorflow/graph.jl @@ -31,6 +31,15 @@ graph(::typeof(svd), x) = svd(x) graph(::typeof(size), x, dim) = TensorFlow.size(x,convert(Tensor{Int32}, dim)) graph(::typeof(size), x) = TensorFlow.size(x) graph(::typeof(chol), args...) = TensorFlow.transpose(TensorFlow.cholesky(args...)) +graph(::typeof(reshape), x, dims) = TensorFlow.reshape(x,convert(Tensor{Int32},dims)) +graph(::typeof(Flux.tile), args...) = TensorFlow.tile(args...) +graph(::typeof(fill), x, dims) = Ops.fill(convert(Tensor{Int32}, dims), Tensor(x)) +graph(::typeof(Flux.cast), args...) = TensorFlow.cast(args...) +graph(::typeof(solve), A, b) = TensorFlow.matrix_solve(A, b) +graph(::typeof(triangular_solve), A, b) = TensorFlow.matrix_triangular_solve(A, b; lower=false) +graph(::typeof(randu), x) = Ops.random_uniform(convert(Tensor{Int32},x);dtype=Float32) +graph(::typeof(randn), x) = TensorFlow.random_normal(convert(Tensor{Int32},x);dtype=Float32) +graph(::typeof(Flux.expand_dims), x, dim) = TensorFlow.expand_dims(x,convert(Tensor{Int32},dim)) for op in (*, .*, .+, .^, log, exp, ceil, floor, sqrt, abs, cos, sin, tan, atan, asin, acos, tanh, lgamma, erf, erfc, real, imag, conj, diff --git a/src/ops.jl b/src/ops.jl new file mode 100644 index 00000000..e9cb75b1 --- /dev/null +++ b/src/ops.jl @@ -0,0 +1,18 @@ +export reshape, tile, fill, cast, solve, triangular_solve, randu, randn, + expand_dims + +import Base: reshape, fill, randn + +reshape(x::AbstractArray, dims::AbstractArray) = reshape(x,tuple(dims...)) +tile(x::AbstractArray, mult::AbstractArray) = repeat(x,outer=tuple(mult...)) +fill{T}(x::T, dims::AbstractArray) = fill(x,tuple(dims...)) +cast{T}(x::AbstractArray, ::Type{T}) = convert(Array{T},x) +solve(A::AbstractArray, b::AbstractArray) = A\b +triangular_solve(A::AbstractArray, b::AbstractArray) = A\b +randu(x::AbstractArray) = rand(tuple(x...)) +randn(x::AbstractArray) = randn(tuple(x...)) + +function expand_dims(x,dim) + s = [size(x)...] + reshape(x,tuple(vcat(s[1:dim-1],1,s[dim:end])...)) +end diff --git a/test/backend/tensorflow.jl b/test/backend/tensorflow.jl index 1dcfdf53..872ef3ce 100644 --- a/test/backend/tensorflow.jl +++ b/test/backend/tensorflow.jl @@ -47,6 +47,24 @@ end A = randn(6,5) A = A'*A @test tf(@net x -> chol(x))(A) ≈ chol(A) + A = randn(Float32,(6,3)) + @test transpose(tf(@net (x,y) -> reshape(x,y))(transpose(A),[2,9])) ≈ reshape(A,(9,2)) # Note: TF is row major and julia is not + A = randn(Float32,(4,3,1)) + @test tf(@net (x,y) -> Flux.tile(x,y))(A,[1,1,3]) ≈ repeat(A,outer=(1,1,3)) + @test tf(@net (x,y) -> fill(x,y))(3.2,[3,2]) ≈ convert(Array{Float32},3.2*ones(3,2)) + @test typeof(tf(@net x -> Flux.cast(x,Int32))(A)) == Array{Int32,3} + A = randn(Float32,(5,5)) + b = randn(Float32,(5,1)) + @test tf(@net (x,y) -> solve(x,y))(A,b) ≈ A\b + _,A,_ = lu(A) + @test tf(@net (x,y) -> triangular_solve(x,y))(A,b) ≈ A\b + @test size(tf(@net x -> randu(x))([2,3])) == (2,3) + @test size(tf(@net x -> randn(x))([2,3])) == (2,3) + m = tf(@net (x,y) -> Flux.expand_dims(x,y)) + A = randn(Float32,(3,2)) + @test m(A,1) ≈ Flux.expand_dims(A,1) + @test m(A,2) ≈ Flux.expand_dims(A,2) + @test m(A,3) ≈ Flux.expand_dims(A,3) end end