Compare commits
6 Commits
Author | SHA1 | Date |
---|---|---|
![]() |
f8c8bb4e35 | |
![]() |
c1f0c29026 | |
![]() |
14e7181c7c | |
![]() |
89191bdeb1 | |
![]() |
c6ba49e8ea | |
![]() |
d77dbc4931 |
|
@ -1,12 +0,0 @@
|
|||
[Please delete this text and describe your change here.
|
||||
For bugfixes, please detail the bug and include a test case which your patch fixes.
|
||||
If you are adding a new feature, please clearly describe the design, its rationale, the possible alternatives considered.
|
||||
It is easiest to merge new features when there is clear precedent in other systems; we need to know we're taking
|
||||
the right direction since it can be hard to change later.]
|
||||
|
||||
### PR Checklist
|
||||
|
||||
- [ ] Tests are added
|
||||
- [ ] Entry in NEWS.md
|
||||
- [ ] Documentation, if applicable
|
||||
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).
|
|
@ -6,8 +6,16 @@ on:
|
|||
|
||||
jobs:
|
||||
CompatHelper:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ${{ matrix.os }}
|
||||
strategy:
|
||||
matrix:
|
||||
julia-version: [1.3]
|
||||
julia-arch: [x64]
|
||||
os: [ubuntu-latest]
|
||||
steps:
|
||||
- uses: julia-actions/setup-julia@latest
|
||||
with:
|
||||
version: ${{ matrix.julia-version }}
|
||||
- name: Pkg.add("CompatHelper")
|
||||
run: julia -e 'using Pkg; Pkg.add("CompatHelper")'
|
||||
- name: CompatHelper.main()
|
||||
|
|
|
@ -4,3 +4,4 @@
|
|||
docs/build/
|
||||
docs/site/
|
||||
deps
|
||||
Manifest.toml
|
||||
|
|
387
Manifest.toml
387
Manifest.toml
|
@ -1,387 +0,0 @@
|
|||
# This file is machine-generated - editing it directly is not advised
|
||||
|
||||
[[AbstractFFTs]]
|
||||
deps = ["LinearAlgebra"]
|
||||
git-tree-sha1 = "051c95d6836228d120f5f4b984dd5aba1624f716"
|
||||
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
|
||||
version = "0.5.0"
|
||||
|
||||
[[AbstractTrees]]
|
||||
deps = ["Markdown"]
|
||||
git-tree-sha1 = "33e450545eaf7699da1a6e755f9ea65f14077a45"
|
||||
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
|
||||
version = "0.3.3"
|
||||
|
||||
[[Adapt]]
|
||||
deps = ["LinearAlgebra"]
|
||||
git-tree-sha1 = "fd04049c7dd78cfef0b06cdc1f0f181467655712"
|
||||
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
|
||||
version = "1.1.0"
|
||||
|
||||
[[ArrayLayouts]]
|
||||
deps = ["FillArrays", "LinearAlgebra"]
|
||||
git-tree-sha1 = "a504dca2ac7eda8761c8f7c1ed52427a1be75a3c"
|
||||
uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
|
||||
version = "0.2.6"
|
||||
|
||||
[[Base64]]
|
||||
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
|
||||
|
||||
[[BinaryProvider]]
|
||||
deps = ["Libdl", "Logging", "SHA"]
|
||||
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
|
||||
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
|
||||
version = "0.5.10"
|
||||
|
||||
[[CEnum]]
|
||||
git-tree-sha1 = "1b77a77c3b28e0b3f413f7567c9bb8dd9bdccd14"
|
||||
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
|
||||
version = "0.3.0"
|
||||
|
||||
[[CUDAapi]]
|
||||
deps = ["Libdl", "Logging"]
|
||||
git-tree-sha1 = "831b825d10104bd29e28f6da93312a976830717b"
|
||||
uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
|
||||
version = "4.0.0"
|
||||
|
||||
[[CUDAdrv]]
|
||||
deps = ["CEnum", "CUDAapi", "Printf"]
|
||||
git-tree-sha1 = "f56bbf18c86bcff7a961a32a4947a5abb2963a29"
|
||||
uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
|
||||
version = "6.3.0"
|
||||
|
||||
[[CUDAnative]]
|
||||
deps = ["Adapt", "BinaryProvider", "CEnum", "CUDAapi", "CUDAdrv", "ExprTools", "GPUCompiler", "LLVM", "Libdl", "Pkg", "Printf"]
|
||||
git-tree-sha1 = "ac86db2b05fdfec96b011e25a504ffe7476e8a68"
|
||||
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
|
||||
version = "3.1.0"
|
||||
|
||||
[[CodeTracking]]
|
||||
deps = ["InteractiveUtils", "UUIDs"]
|
||||
git-tree-sha1 = "cab4da992adc0a64f63fa30d2db2fd8bec40cab4"
|
||||
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
|
||||
version = "0.5.11"
|
||||
|
||||
[[CodecZlib]]
|
||||
deps = ["TranscodingStreams", "Zlib_jll"]
|
||||
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
|
||||
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
|
||||
version = "0.7.0"
|
||||
|
||||
[[ColorTypes]]
|
||||
deps = ["FixedPointNumbers", "Random"]
|
||||
git-tree-sha1 = "c73d9cfc2a9d8433dc77f5bff4bddf46b1d78c20"
|
||||
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
|
||||
version = "0.10.3"
|
||||
|
||||
[[Colors]]
|
||||
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Reexport"]
|
||||
git-tree-sha1 = "1e9bba7984e78aa8cdeea7f9f7cc984ad4e4b1c7"
|
||||
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
|
||||
version = "0.12.2"
|
||||
|
||||
[[CommonSubexpressions]]
|
||||
deps = ["Test"]
|
||||
git-tree-sha1 = "efdaf19ab11c7889334ca247ff4c9f7c322817b0"
|
||||
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
|
||||
version = "0.2.0"
|
||||
|
||||
[[CompilerSupportLibraries_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
|
||||
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
|
||||
version = "0.3.3+0"
|
||||
|
||||
[[Cthulhu]]
|
||||
deps = ["CodeTracking", "InteractiveUtils", "REPL", "UUIDs", "Unicode"]
|
||||
git-tree-sha1 = "f3643e78353199d3097821e806348bd83f364155"
|
||||
uuid = "f68482b8-f384-11e8-15f7-abe071a5a75f"
|
||||
version = "1.1.1"
|
||||
|
||||
[[CuArrays]]
|
||||
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SparseArrays", "Statistics", "TimerOutputs"]
|
||||
git-tree-sha1 = "1582b74d2322df7dd94549d4ac9d095e0f20e884"
|
||||
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
|
||||
version = "2.2.1"
|
||||
|
||||
[[DataAPI]]
|
||||
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32"
|
||||
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
|
||||
version = "1.3.0"
|
||||
|
||||
[[DataStructures]]
|
||||
deps = ["InteractiveUtils", "OrderedCollections"]
|
||||
git-tree-sha1 = "af6d9c86e191c917c2276fbede1137e8ea20157f"
|
||||
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
|
||||
version = "0.17.17"
|
||||
|
||||
[[Dates]]
|
||||
deps = ["Printf"]
|
||||
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
|
||||
|
||||
[[DelimitedFiles]]
|
||||
deps = ["Mmap"]
|
||||
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
||||
|
||||
[[DiffResults]]
|
||||
deps = ["StaticArrays"]
|
||||
git-tree-sha1 = "da24935df8e0c6cf28de340b958f6aac88eaa0cc"
|
||||
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
|
||||
version = "1.0.2"
|
||||
|
||||
[[DiffRules]]
|
||||
deps = ["NaNMath", "Random", "SpecialFunctions"]
|
||||
git-tree-sha1 = "eb0c34204c8410888844ada5359ac8b96292cfd1"
|
||||
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
|
||||
version = "1.0.1"
|
||||
|
||||
[[Distributed]]
|
||||
deps = ["Random", "Serialization", "Sockets"]
|
||||
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
|
||||
|
||||
[[ExprTools]]
|
||||
git-tree-sha1 = "6f0517056812fd6aa3af23d4b70d5325a2ae4e95"
|
||||
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
|
||||
version = "0.1.1"
|
||||
|
||||
[[FillArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "SparseArrays"]
|
||||
git-tree-sha1 = "44f561e293987ffc84272cd3d2b14b0b93123d63"
|
||||
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
|
||||
version = "0.8.10"
|
||||
|
||||
[[FixedPointNumbers]]
|
||||
git-tree-sha1 = "3ba9ea634d4c8b289d590403b4a06f8e227a6238"
|
||||
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
|
||||
version = "0.8.0"
|
||||
|
||||
[[ForwardDiff]]
|
||||
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
|
||||
git-tree-sha1 = "869540e4367122fbffaace383a5bdc34d6e5e5ac"
|
||||
uuid = "f6369f11-7733-5829-9624-2563aa707210"
|
||||
version = "0.10.10"
|
||||
|
||||
[[Functors]]
|
||||
deps = ["MacroTools"]
|
||||
git-tree-sha1 = "f40adc6422f548176bb4351ebd29e4abf773040a"
|
||||
uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
|
||||
version = "0.1.0"
|
||||
|
||||
[[Future]]
|
||||
deps = ["Random"]
|
||||
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
|
||||
|
||||
[[GPUArrays]]
|
||||
deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"]
|
||||
git-tree-sha1 = "d887693eb1bd5e1fd573262a978745481895ec7d"
|
||||
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
|
||||
version = "3.4.1"
|
||||
|
||||
[[GPUCompiler]]
|
||||
deps = ["Cthulhu", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "TimerOutputs"]
|
||||
git-tree-sha1 = "5275aa268ecd09640b32560e1eae90c78816e4d1"
|
||||
uuid = "61eb1bfa-7361-4325-ad38-22787b887f55"
|
||||
version = "0.2.0"
|
||||
|
||||
[[IRTools]]
|
||||
deps = ["InteractiveUtils", "MacroTools", "Test"]
|
||||
git-tree-sha1 = "90ee39f9beaaa186e4968417ea2b8ed5673c91c0"
|
||||
uuid = "7869d1d1-7146-5819-86e3-90919afe41df"
|
||||
version = "0.3.3"
|
||||
|
||||
[[InteractiveUtils]]
|
||||
deps = ["Markdown"]
|
||||
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
|
||||
|
||||
[[Juno]]
|
||||
deps = ["Base64", "Logging", "Media", "Profile"]
|
||||
git-tree-sha1 = "a686b0cf235fa3e491b79b4783c2d2382292b436"
|
||||
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
|
||||
version = "0.8.2"
|
||||
|
||||
[[LLVM]]
|
||||
deps = ["CEnum", "Libdl", "Printf", "Unicode"]
|
||||
git-tree-sha1 = "dd3f584c3dbefe39b2a8fbafa1a3b77e31e21255"
|
||||
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
|
||||
version = "1.5.1"
|
||||
|
||||
[[LibGit2]]
|
||||
deps = ["Printf"]
|
||||
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
|
||||
|
||||
[[Libdl]]
|
||||
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
|
||||
|
||||
[[LinearAlgebra]]
|
||||
deps = ["Libdl"]
|
||||
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
|
||||
[[Logging]]
|
||||
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
|
||||
|
||||
[[MacroTools]]
|
||||
deps = ["Markdown", "Random"]
|
||||
git-tree-sha1 = "f7d2e3f654af75f01ec49be82c231c382214223a"
|
||||
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
version = "0.5.5"
|
||||
|
||||
[[Markdown]]
|
||||
deps = ["Base64"]
|
||||
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
|
||||
|
||||
[[Media]]
|
||||
deps = ["MacroTools", "Test"]
|
||||
git-tree-sha1 = "75a54abd10709c01f1b86b84ec225d26e840ed58"
|
||||
uuid = "e89f7d12-3494-54d1-8411-f7d8b9ae1f27"
|
||||
version = "0.5.0"
|
||||
|
||||
[[Missings]]
|
||||
deps = ["DataAPI"]
|
||||
git-tree-sha1 = "de0a5ce9e5289f27df672ffabef4d1e5861247d5"
|
||||
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
|
||||
version = "0.4.3"
|
||||
|
||||
[[Mmap]]
|
||||
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
|
||||
|
||||
[[NNlib]]
|
||||
deps = ["BinaryProvider", "Libdl", "LinearAlgebra", "Requires", "Statistics"]
|
||||
git-tree-sha1 = "d9f196d911f55aeaff11b11f681b135980783824"
|
||||
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
version = "0.6.6"
|
||||
|
||||
[[NaNMath]]
|
||||
git-tree-sha1 = "928b8ca9b2791081dc71a51c55347c27c618760f"
|
||||
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
|
||||
version = "0.3.3"
|
||||
|
||||
[[OpenSpecFun_jll]]
|
||||
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
|
||||
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
|
||||
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
|
||||
version = "0.5.3+3"
|
||||
|
||||
[[OrderedCollections]]
|
||||
git-tree-sha1 = "12ce190210d278e12644bcadf5b21cbdcf225cd3"
|
||||
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
|
||||
version = "1.2.0"
|
||||
|
||||
[[Pkg]]
|
||||
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
|
||||
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
|
||||
|
||||
[[Printf]]
|
||||
deps = ["Unicode"]
|
||||
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
|
||||
|
||||
[[Profile]]
|
||||
deps = ["Printf"]
|
||||
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
|
||||
|
||||
[[REPL]]
|
||||
deps = ["InteractiveUtils", "Markdown", "Sockets"]
|
||||
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
|
||||
|
||||
[[Random]]
|
||||
deps = ["Serialization"]
|
||||
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
|
||||
|
||||
[[Reexport]]
|
||||
deps = ["Pkg"]
|
||||
git-tree-sha1 = "7b1d07f411bc8ddb7977ec7f377b97b158514fe0"
|
||||
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
|
||||
version = "0.2.0"
|
||||
|
||||
[[Requires]]
|
||||
deps = ["UUIDs"]
|
||||
git-tree-sha1 = "d37400976e98018ee840e0ca4f9d20baa231dc6b"
|
||||
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
|
||||
version = "1.0.1"
|
||||
|
||||
[[SHA]]
|
||||
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
|
||||
|
||||
[[Serialization]]
|
||||
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
|
||||
|
||||
[[Sockets]]
|
||||
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
|
||||
|
||||
[[SortingAlgorithms]]
|
||||
deps = ["DataStructures", "Random", "Test"]
|
||||
git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd"
|
||||
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
|
||||
version = "0.3.1"
|
||||
|
||||
[[SparseArrays]]
|
||||
deps = ["LinearAlgebra", "Random"]
|
||||
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
|
||||
|
||||
[[SpecialFunctions]]
|
||||
deps = ["OpenSpecFun_jll"]
|
||||
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
|
||||
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
|
||||
version = "0.10.3"
|
||||
|
||||
[[StaticArrays]]
|
||||
deps = ["LinearAlgebra", "Random", "Statistics"]
|
||||
git-tree-sha1 = "5c06c0aeb81bef54aed4b3f446847905eb6cbda0"
|
||||
uuid = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
version = "0.12.3"
|
||||
|
||||
[[Statistics]]
|
||||
deps = ["LinearAlgebra", "SparseArrays"]
|
||||
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
|
||||
|
||||
[[StatsBase]]
|
||||
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics"]
|
||||
git-tree-sha1 = "a6102b1f364befdb05746f386b67c6b7e3262c45"
|
||||
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
|
||||
version = "0.33.0"
|
||||
|
||||
[[Test]]
|
||||
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
|
||||
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[[TimerOutputs]]
|
||||
deps = ["Printf"]
|
||||
git-tree-sha1 = "f458ca23ff80e46a630922c555d838303e4b9603"
|
||||
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
|
||||
version = "0.5.6"
|
||||
|
||||
[[TranscodingStreams]]
|
||||
deps = ["Random", "Test"]
|
||||
git-tree-sha1 = "7c53c35547de1c5b9d46a4797cf6d8253807108c"
|
||||
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
|
||||
version = "0.9.5"
|
||||
|
||||
[[UUIDs]]
|
||||
deps = ["Random", "SHA"]
|
||||
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
|
||||
|
||||
[[Unicode]]
|
||||
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
|
||||
|
||||
[[ZipFile]]
|
||||
deps = ["Libdl", "Printf", "Zlib_jll"]
|
||||
git-tree-sha1 = "254975fef2fc526583bb9b7c9420fe66ffe09f2f"
|
||||
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
|
||||
version = "0.9.2"
|
||||
|
||||
[[Zlib_jll]]
|
||||
deps = ["Libdl", "Pkg"]
|
||||
git-tree-sha1 = "a2e0d558f6031002e380a90613b199e37a8565bf"
|
||||
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
|
||||
version = "1.2.11+10"
|
||||
|
||||
[[Zygote]]
|
||||
deps = ["AbstractFFTs", "ArrayLayouts", "DiffRules", "FillArrays", "ForwardDiff", "Future", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
|
||||
git-tree-sha1 = "707ceea58e2bd0ff3077ab13a92f8355181d3ee4"
|
||||
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
||||
version = "0.4.20"
|
||||
|
||||
[[ZygoteRules]]
|
||||
deps = ["MacroTools"]
|
||||
git-tree-sha1 = "b3b4882cc9accf6731a08cc39543fbc6b669dca8"
|
||||
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
|
||||
version = "0.2.0"
|
13
NEWS.md
13
NEWS.md
|
@ -1,18 +1,5 @@
|
|||
# v0.11
|
||||
* Change to `DataLoader`'s constructor [https://github.com/FluxML/Flux.jl/pull/1152]
|
||||
* Use `DataLoader` with `NamedTuple`s, so that tensors can be accessed by name [https://github.com/FluxML/Flux.jl/pull/1221].
|
||||
* Error if Dense layers weights and biases are not arrays [https://github.com/FluxML/Flux.jl/pull/1218].
|
||||
|
||||
# v0.10.5
|
||||
* Add option for [same padding](https://github.com/FluxML/Flux.jl/pull/901) to conv and pooling layers by setting `pad=SamePad()`.
|
||||
* Added option to set `bias` to [Flux.Zeros](https://github.com/FluxML/Flux.jl/pull/873) to eliminating `bias` from being trained.
|
||||
* Added `GlobalMaxPool` and `GlobalMeanPool` [layers](https://github.com/FluxML/Flux.jl/pull/950) for performing global pooling operations.
|
||||
* Added `ClipValue` and `ClipNorm` in this [pr](https://github.com/FluxML/Flux.jl/pull/1133) to `Flux.Optimise` to provide a cleaner API for gradient clipping.
|
||||
* Added new kwarg-only [constructors](https://github.com/FluxML/Flux.jl/pull/873) for the various convolutional layers.
|
||||
* Documented the convolutional layer constructors accepting `weight` and `bias` keyword arguments to supply custom arrays for those fields.
|
||||
* Testing suite improvements now test for gradients of all layers along with GPU support.
|
||||
* Functors have now moved to [Functors.jl](https://github.com/FluxML/Flux.jl/pull/1174) to allow for their use outside of Flux.
|
||||
* Added [helper functions](https://github.com/FluxML/Flux.jl/pull/873) `Flux.convfilter` and `Flux.depthwiseconvfilter` to construct weight arrays for convolutions outside of layer constructors so as to not have to depend on the default layers for custom implementations.
|
||||
|
||||
# v0.10.0
|
||||
* The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669)
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
name = "Flux"
|
||||
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
|
||||
version = "0.11.0-DEV"
|
||||
version = "0.11.0"
|
||||
|
||||
[deps]
|
||||
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
|
||||
|
@ -9,9 +9,7 @@ CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193"
|
|||
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
|
||||
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
|
||||
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
|
||||
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
|
||||
Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
|
||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
|
||||
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
|
||||
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
|
||||
|
@ -27,11 +25,10 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
|
|||
|
||||
[compat]
|
||||
AbstractTrees = "0.2, 0.3"
|
||||
Adapt = "1, 2.0"
|
||||
Adapt = "1"
|
||||
CodecZlib = "0.5, 0.6, 0.7"
|
||||
Colors = "0.8, 0.9, 0.10, 0.11, 0.12"
|
||||
CuArrays = "2"
|
||||
Functors = "0.1"
|
||||
Juno = "0.5, 0.6, 0.7, 0.8"
|
||||
MacroTools = "0.3, 0.4, 0.5"
|
||||
NNlib = "0.6"
|
||||
|
|
|
@ -7,15 +7,15 @@ julia> using Flux: onehot, onecold
|
|||
|
||||
julia> onehot(:b, [:a, :b, :c])
|
||||
3-element Flux.OneHotVector:
|
||||
0
|
||||
1
|
||||
0
|
||||
false
|
||||
true
|
||||
false
|
||||
|
||||
julia> onehot(:c, [:a, :b, :c])
|
||||
3-element Flux.OneHotVector:
|
||||
0
|
||||
0
|
||||
1
|
||||
false
|
||||
false
|
||||
true
|
||||
```
|
||||
|
||||
The inverse is `onecold` (which can take a general probability distribution, as well as just booleans).
|
||||
|
|
|
@ -19,7 +19,7 @@ Affine{Array{Float64,2},Array{Float64,1}}([0.66722 0.774872 0.249809; 0.843321 0
|
|||
julia> Flux.params(a) # default behavior
|
||||
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955]])
|
||||
|
||||
julia> Flux.trainable(a::Affine) = (a.W,)
|
||||
julia> Flux.trainable(a::Affine) = (a.W, a.b,)
|
||||
|
||||
julia> Flux.params(a)
|
||||
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297]])
|
||||
|
|
|
@ -32,6 +32,8 @@ julia> gradient(f, [2, 1], [2, 0])
|
|||
But machine learning models can have *hundreds* of parameters! To handle this, Flux lets you work with collections of parameters, via `params`. You can get the gradient of all parameters used in a program without explicitly passing them in.
|
||||
|
||||
```jldoctest basics
|
||||
julia> using Flux
|
||||
|
||||
julia> x = [2, 1];
|
||||
|
||||
julia> y = [2, 0];
|
||||
|
|
|
@ -20,11 +20,7 @@ GlobalMeanPool
|
|||
DepthwiseConv
|
||||
ConvTranspose
|
||||
CrossCor
|
||||
SamePad
|
||||
flatten
|
||||
Flux.Zeros
|
||||
Flux.convfilter
|
||||
Flux.depthwiseconvfilter
|
||||
```
|
||||
|
||||
## Recurrent Layers
|
||||
|
|
|
@ -39,7 +39,7 @@ E.g. the following will have run into the same problem as above:
|
|||
leaky_tanh(x) = 0.01*x + tanh(x)
|
||||
```
|
||||
|
||||
While one could change the activation function (e.g. to use `0.01f0*x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
|
||||
While one could change the activation function (e.g. to use `0.01f0x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
|
||||
```
|
||||
leaky_tanh(x) = oftype(x/1, 0.01)*x + tanh(x)
|
||||
```
|
||||
|
|
|
@ -140,16 +140,3 @@ ExpDecay
|
|||
InvDecay
|
||||
WeightDecay
|
||||
```
|
||||
|
||||
## Gradient Clipping
|
||||
|
||||
Gradient clipping is useful for training recurrent neural networks, which have a tendency to suffer from the exploding gradient problem. An example usage is
|
||||
|
||||
```julia
|
||||
opt = Optimiser(ClipValue(1e-3), ADAM(1e-3))
|
||||
```
|
||||
|
||||
```@docs
|
||||
ClipValue
|
||||
ClipNorm
|
||||
```
|
|
@ -142,7 +142,7 @@ function my_custom_train!(loss, ps, data, opt)
|
|||
for d in data
|
||||
gs = gradient(ps) do
|
||||
training_loss = loss(d...)
|
||||
# Insert whatever code you want here that needs Training loss, e.g. logging
|
||||
# Insert what ever code you want here that needs Training loss, e.g. logging
|
||||
return training_loss
|
||||
end
|
||||
# insert what ever code you want here that needs gradient
|
||||
|
|
|
@ -3,8 +3,7 @@ module Flux
|
|||
# Zero Flux Given
|
||||
|
||||
using Base: tail
|
||||
using Statistics, Random, LinearAlgebra
|
||||
using Zygote, MacroTools, Juno, Reexport
|
||||
using Zygote, MacroTools, Juno, Reexport, Statistics, Random
|
||||
using MacroTools: @forward
|
||||
@reexport using NNlib
|
||||
using Zygote: Params, @adjoint, gradient, pullback, @nograd
|
||||
|
@ -21,8 +20,7 @@ using .Optimise
|
|||
using .Optimise: @epochs
|
||||
export Descent, ADAM, Momentum, Nesterov, RMSProp,
|
||||
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
|
||||
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay,
|
||||
ClipValue, ClipNorm
|
||||
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay
|
||||
|
||||
|
||||
using CuArrays
|
||||
|
|
|
@ -16,8 +16,8 @@ end
|
|||
An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations
|
||||
(except possibly the last one).
|
||||
|
||||
Takes as input a single data tensor, or a tuple (or a named tuple) of tensors.
|
||||
The last dimension in each tensor is considered to be the observation dimension.
|
||||
Takes as input a data tensors or a tuple of one or more such tensors.
|
||||
The last dimension in each tensor is considered to be the observation dimension.
|
||||
|
||||
If `shuffle=true`, shuffles the observations each time iterations are re-started.
|
||||
If `partial=false`, drops the last mini-batch if it is smaller than the batchsize.
|
||||
|
@ -57,13 +57,6 @@ Usage example:
|
|||
# train for 10 epochs
|
||||
using IterTools: ncycle
|
||||
Flux.train!(loss, ps, ncycle(train_loader, 10), opt)
|
||||
|
||||
# can use NamedTuple to name tensors
|
||||
train_loader = DataLoader((images=Xtrain, labels=Ytrain), batchsize=2, shuffle=true)
|
||||
for datum in train_loader
|
||||
@assert size(datum.images) == (10, 2)
|
||||
@assert size(datum.labels) == (2,)
|
||||
end
|
||||
"""
|
||||
function DataLoader(data; batchsize=1, shuffle=false, partial=true)
|
||||
batchsize > 0 || throw(ArgumentError("Need positive batchsize"))
|
||||
|
@ -74,6 +67,7 @@ function DataLoader(data; batchsize=1, shuffle=false, partial=true)
|
|||
batchsize = n
|
||||
end
|
||||
imax = partial ? n : n - batchsize + 1
|
||||
ids = 1:min(n, batchsize)
|
||||
DataLoader(data, batchsize, n, partial, imax, [1:n;], shuffle)
|
||||
end
|
||||
|
||||
|
@ -95,16 +89,19 @@ end
|
|||
|
||||
_nobs(data::AbstractArray) = size(data)[end]
|
||||
|
||||
function _nobs(data::Union{Tuple, NamedTuple})
|
||||
function _nobs(data::Tuple)
|
||||
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
|
||||
n = _nobs(data[1])
|
||||
if !all(x -> _nobs(x) == n, Base.tail(data))
|
||||
if !all(x -> _nobs(x) == n, data[2:end])
|
||||
throw(DimensionMismatch("All data should contain same number of observations"))
|
||||
end
|
||||
return n
|
||||
end
|
||||
|
||||
_getobs(data::AbstractArray, i) = data[ntuple(i -> Colon(), Val(ndims(data) - 1))..., i]
|
||||
_getobs(data::Union{Tuple, NamedTuple}, i) = map(Base.Fix2(_getobs, i), data)
|
||||
function _getobs(data::A, i) where A<:AbstractArray{T,N} where {T,N}
|
||||
getindex(data, ntuple(i->Colon(), N-1)..., i)
|
||||
end
|
||||
|
||||
Base.eltype(::DataLoader{D}) where D = D
|
||||
_getobs(data::Tuple, i) = ((_getobs(x, i) for x in data)...,)
|
||||
|
||||
Base.eltype(d::DataLoader{D}) where D = D
|
|
@ -1,6 +1,41 @@
|
|||
import Adapt: adapt, adapt_storage
|
||||
using Zygote: IdSet
|
||||
import Functors: @functor, functor, fmap
|
||||
|
||||
functor(x) = (), _ -> x
|
||||
|
||||
functor(x::Tuple) = x, y -> y
|
||||
functor(x::NamedTuple) = x, y -> y
|
||||
|
||||
functor(x::AbstractArray) = x, y -> y
|
||||
functor(x::AbstractArray{<:Number}) = (), _ -> x
|
||||
|
||||
function makefunctor(m::Module, T, fs = fieldnames(T))
|
||||
@eval m begin
|
||||
Flux.functor(x::$T) = ($([:($f=x.$f) for f in fs]...),), y -> $T(y...)
|
||||
end
|
||||
end
|
||||
|
||||
function functorm(T, fs = nothing)
|
||||
fs == nothing || isexpr(fs, :tuple) || error("@functor T (a, b)")
|
||||
fs = fs == nothing ? [] : [:($(map(QuoteNode, fs.args)...),)]
|
||||
:(makefunctor(@__MODULE__, $(esc(T)), $(fs...)))
|
||||
end
|
||||
|
||||
macro functor(args...)
|
||||
functorm(args...)
|
||||
end
|
||||
|
||||
isleaf(x) = functor(x)[1] === ()
|
||||
|
||||
function fmap1(f, x)
|
||||
func, re = functor(x)
|
||||
re(map(f, func))
|
||||
end
|
||||
|
||||
function fmap(f, x; cache = IdDict())
|
||||
haskey(cache, x) && return cache[x]
|
||||
cache[x] = isleaf(x) ? f(x) : fmap1(x -> fmap(f, x, cache = cache), x)
|
||||
end
|
||||
|
||||
trainable(m) = functor(m)[1]
|
||||
|
||||
|
@ -24,7 +59,7 @@ testmode!(m, mode = true) = m
|
|||
trainmode!(m, mode = true)
|
||||
|
||||
Set a layer of model's train mode (see below).
|
||||
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)`).
|
||||
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)).
|
||||
|
||||
_Note_: if you manually set a model into train mode, you need to manually place
|
||||
it into test mode during testing phase.
|
||||
|
|
|
@ -30,7 +30,7 @@ end
|
|||
@forward Chain.layers Base.getindex, Base.length, Base.first, Base.last,
|
||||
Base.iterate, Base.lastindex
|
||||
|
||||
functor(::Type{<:Chain}, c) = c.layers, ls -> Chain(ls...)
|
||||
functor(c::Chain) = c.layers, ls -> Chain(ls...)
|
||||
|
||||
applychain(::Tuple{}, x) = x
|
||||
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))
|
||||
|
@ -102,7 +102,7 @@ julia> d(rand(5))
|
|||
-0.16210233
|
||||
0.12311903```
|
||||
"""
|
||||
struct Dense{F,S<:AbstractArray,T<:AbstractArray}
|
||||
struct Dense{F,S,T}
|
||||
W::S
|
||||
b::T
|
||||
σ::F
|
||||
|
|
|
@ -132,7 +132,7 @@ end
|
|||
function (c::Conv)(x::AbstractArray)
|
||||
# TODO: breaks gpu broadcast :(
|
||||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||||
σ, b = c.σ, reshape(c.bias, ntuple(_->1, length(c.stride))..., :, 1)
|
||||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||||
σ.(conv(x, c.weight, cdims) .+ b)
|
||||
end
|
||||
|
@ -222,7 +222,7 @@ end
|
|||
function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
|
||||
weight = convfilter(k, reverse(ch), init = init), bias = zeros(ch[2])) where N
|
||||
|
||||
|
||||
ConvTranspose(weight, bias, σ,
|
||||
stride = stride, pad = pad, dilation = dilation)
|
||||
end
|
||||
|
|
|
@ -46,24 +46,23 @@ given the prediction `ŷ` and true values `y`.
|
|||
Huber loss = |
|
||||
| δ * (|ŷ - y| - 0.5 * δ), otherwise
|
||||
"""
|
||||
#TODO: remove dropgrad when Zygote can handle this function with CuArrays
|
||||
function huber_loss(ŷ, y; δ=eltype(ŷ)(1))
|
||||
abs_error = abs.(ŷ .- y)
|
||||
temp = Zygote.dropgrad(abs_error .< δ)
|
||||
temp = abs_error .< δ
|
||||
x = eltype(ŷ)(0.5)
|
||||
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
|
||||
end
|
||||
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
|
||||
return -sum(xlogy.(y, ŷ)) * 1 // size(y, 2)
|
||||
return -sum(y .* log.(ŷ)) * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
|
||||
return -sum(xlogy.(y, ŷ)) .* weight * 1 // size(y, 2)
|
||||
return -sum(y .* log.(ŷ)) .* weight * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
function _crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
|
||||
return -sum(xlogy.(y, ŷ) .* weight) * 1 // size(y, 2)
|
||||
return -sum(y .* log.(ŷ) .* weight) * 1 // size(y, 2)
|
||||
end
|
||||
|
||||
"""
|
||||
|
@ -92,7 +91,7 @@ Return the crossentropy computed after a [`Flux.logsoftmax`](@ref) operation;
|
|||
calculated as `-sum(y .* logsoftmax(ŷ) .* weight) / size(y, 2)`.
|
||||
|
||||
`logitcrossentropy(ŷ, y)` is mathematically equivalent to
|
||||
[`Flux.crossentropy(softmax(ŷ), y)`](@ref) but it is more numerically stable.
|
||||
[`Flux.crossentropy(softmax(log(ŷ)), y)`](@ref) but it is more numerically stable.
|
||||
|
||||
See also: [`Flux.crossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
|
||||
|
||||
|
@ -124,7 +123,7 @@ julia> Flux.binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
|
|||
0.8616703662235441
|
||||
```
|
||||
"""
|
||||
binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -xlogy(y, ŷ + ϵ) - xlogy(1 - y, 1 - ŷ + ϵ)
|
||||
binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ)
|
||||
|
||||
# Re-definition to fix interaction with CuArrays.
|
||||
CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1 - y)*log(1 - ŷ + ϵ)
|
||||
|
@ -133,7 +132,7 @@ CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1
|
|||
logitbinarycrossentropy(ŷ, y)
|
||||
|
||||
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
|
||||
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable.
|
||||
[`Flux.binarycrossentropy(σ(log(ŷ)), y)`](@ref) but it is more numerically stable.
|
||||
|
||||
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)
|
||||
|
||||
|
@ -196,7 +195,7 @@ It is always non-negative and zero only when both the distributions are equal
|
|||
everywhere.
|
||||
"""
|
||||
function kldivergence(ŷ, y)
|
||||
entropy = sum(xlogx.(y)) * 1 //size(y,2)
|
||||
entropy = sum(y .* log.(y)) * 1 //size(y,2)
|
||||
cross_entropy = crossentropy(ŷ, y)
|
||||
return entropy + cross_entropy
|
||||
end
|
||||
|
@ -209,7 +208,7 @@ distribution `y`; calculated as `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`.
|
|||
|
||||
[More information.](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
|
||||
"""
|
||||
poisson(ŷ, y) = sum(ŷ .- xlogy.(y, ŷ)) * 1 // size(y,2)
|
||||
poisson(ŷ, y) = sum(ŷ .- y .* log.(ŷ)) * 1 // size(y,2)
|
||||
|
||||
"""
|
||||
hinge(ŷ, y)
|
||||
|
@ -263,34 +262,3 @@ by linearizing all values for each element in the batch.
|
|||
function flatten(x::AbstractArray)
|
||||
return reshape(x, :, size(x)[end])
|
||||
end
|
||||
|
||||
"""
|
||||
xlogx(x)
|
||||
Return `x * log(x)` for `x ≥ 0`, handling `x = 0` by taking the downward limit.
|
||||
"""
|
||||
function xlogx(x)
|
||||
result = x * log(x)
|
||||
ifelse(iszero(x), zero(result), result)
|
||||
end
|
||||
CuArrays.@cufunc function xlogx(x)
|
||||
result = x * log(x)
|
||||
ifelse(iszero(x), zero(result), result)
|
||||
end
|
||||
|
||||
"""
|
||||
xlogy(x, y)
|
||||
Return `x * log(y)` for `y > 0` with correct limit at `x = 0`.
|
||||
"""
|
||||
function xlogy(x, y)
|
||||
result = x * log(y)
|
||||
ifelse(iszero(x), zero(result), result)
|
||||
end
|
||||
CuArrays.@cufunc function xlogy(x, y)
|
||||
result = x * log(y)
|
||||
ifelse(iszero(x), zero(result), result)
|
||||
end
|
||||
|
||||
@adjoint function broadcasted(::typeof(xlogy), x::Zygote.Numeric, y::Zygote.Numeric)
|
||||
res = xlogy.(x, y)
|
||||
res, Δ -> (nothing, Zygote.unbroadcast(x, xlogy.(Δ, y)), Zygote.unbroadcast(y, Δ .* x ./ y))
|
||||
end
|
||||
|
|
|
@ -27,8 +27,7 @@ Base.getindex(xs::OneHotMatrix, ::Colon, ::Colon) = OneHotMatrix(xs.height, copy
|
|||
|
||||
Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data)
|
||||
|
||||
# remove workaround when https://github.com/JuliaGPU/CuArrays.jl/issues/676 is fixed
|
||||
A::AbstractMatrix * B::OneHotMatrix = A[:, cpu(map(x->x.ix, B.data))]
|
||||
A::AbstractMatrix * B::OneHotMatrix = A[:, map(x->x.ix, B.data)]
|
||||
|
||||
Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(length(x), [x, xs...])
|
||||
|
||||
|
@ -49,7 +48,7 @@ cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.d
|
|||
Create a `OneHotVector` with its `l`-th element `true` based on the
|
||||
possible set of `labels`.
|
||||
If `unk` is given, return `onehot(unk, labels)` if the input label `l` is not found
|
||||
in `labels`; otherwise, it will raise an error.
|
||||
in `labels`; otherwise it will error.
|
||||
|
||||
# Examples
|
||||
```jldoctest
|
||||
|
|
|
@ -1,12 +1,9 @@
|
|||
module Optimise
|
||||
|
||||
using LinearAlgebra
|
||||
|
||||
export train!, update!,
|
||||
Descent, ADAM, Momentum, Nesterov, RMSProp,
|
||||
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,RADAM,
|
||||
InvDecay, ExpDecay, WeightDecay, stop, Optimiser,
|
||||
ClipValue, ClipNorm
|
||||
InvDecay, ExpDecay, WeightDecay, stop, Optimiser
|
||||
|
||||
include("optimisers.jl")
|
||||
include("train.jl")
|
||||
|
|
|
@ -509,7 +509,7 @@ function apply!(o::ExpDecay, x, Δ)
|
|||
η, s, decay = o.eta, o.step, o.decay
|
||||
n = o.current[x] = get(o.current, x, 0) + 1
|
||||
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
|
||||
η = max(η * decay, o.clip)
|
||||
η = max(η * decay^(s / n), o.clip)
|
||||
o.eta = η
|
||||
end
|
||||
@. Δ *= η
|
||||
|
@ -533,31 +533,3 @@ function apply!(o::WeightDecay, x, Δ)
|
|||
wd = o.wd
|
||||
@. Δ += wd * x
|
||||
end
|
||||
|
||||
"""
|
||||
ClipValue(thresh)
|
||||
|
||||
Clip gradients when their absolute value exceeds `thresh`.
|
||||
"""
|
||||
mutable struct ClipValue{T}
|
||||
thresh::T
|
||||
end
|
||||
|
||||
apply!(o::ClipValue, x, Δ) = clamp!(Δ, -o.thresh, o.thresh)
|
||||
|
||||
"""
|
||||
ClipNorm(thresh)
|
||||
|
||||
Clip gradients when their L2 norm exceeds `thresh`.
|
||||
"""
|
||||
mutable struct ClipNorm{T}
|
||||
thresh::T
|
||||
end
|
||||
|
||||
function apply!(o::ClipNorm, x, Δ)
|
||||
Δnrm = norm(Δ)
|
||||
if Δnrm > o.thresh
|
||||
rmul!(Δ, o.thresh / Δnrm)
|
||||
end
|
||||
return Δ
|
||||
end
|
|
@ -56,19 +56,23 @@ function stop()
|
|||
throw(StopException())
|
||||
end
|
||||
|
||||
maketuple(x) = (x,)
|
||||
maketuple(x::Tuple) = x
|
||||
|
||||
"""
|
||||
train!(loss, params, data, opt; cb)
|
||||
|
||||
For each datapoint `d` in `data` compute the gradient of `loss(d...)` through
|
||||
backpropagation and call the optimizer `opt`.
|
||||
For each datapoint `d` in `data`, assumed to be a tuple, compute the gradient of `loss(d...)`
|
||||
with respect to `params`, and call the optimizer `opt`.
|
||||
|
||||
In case datapoints `d` are of numeric array type, assume no splatting is needed
|
||||
and compute the gradient of `loss(d)`.
|
||||
If `data` yields a tuple mini-batch `d` under iteration, it will be splatted in the function call
|
||||
`loss(d...)`, otherwise `loss(d)` will be called for non-tuple mini-batches.
|
||||
|
||||
A callback is given with the keyword argument `cb`. For example, this will print
|
||||
"training" every 10 seconds (using [`Flux.throttle`](@ref)):
|
||||
|
||||
train!(loss, params, data, opt, cb = throttle(() -> println("training"), 10))
|
||||
train!(loss, params, data, opt,
|
||||
cb = throttle(() -> println("training"), 10))
|
||||
|
||||
The callback can call [`Flux.stop`](@ref) to interrupt the training loop.
|
||||
|
||||
|
@ -79,14 +83,8 @@ function train!(loss, ps, data, opt; cb = () -> ())
|
|||
cb = runall(cb)
|
||||
@progress for d in data
|
||||
try
|
||||
if d isa AbstractArray{<:Number}
|
||||
gs = gradient(ps) do
|
||||
loss(d)
|
||||
end
|
||||
else
|
||||
gs = gradient(ps) do
|
||||
loss(d...)
|
||||
end
|
||||
gs = gradient(ps) do
|
||||
loss(maketuple(d)...)
|
||||
end
|
||||
update!(opt, ps, gs)
|
||||
cb()
|
||||
|
|
|
@ -246,10 +246,6 @@ function _restructure(m, xs)
|
|||
end
|
||||
end
|
||||
|
||||
@adjoint function _restructure(m, xs)
|
||||
_restructure(m, xs), dm -> (nothing,destructure(dm)[1])
|
||||
end
|
||||
|
||||
"""
|
||||
destructure(m)
|
||||
|
||||
|
|
|
@ -69,7 +69,6 @@ if CuArrays.has_cudnn()
|
|||
@info "Testing Flux/CUDNN"
|
||||
include("cudnn.jl")
|
||||
include("curnn.jl")
|
||||
include("layers.jl")
|
||||
else
|
||||
@warn "CUDNN unavailable, not testing GPU DNN support"
|
||||
end
|
||||
|
|
|
@ -1,98 +0,0 @@
|
|||
# Test layers and data/model movements on and off the GPU
|
||||
# Add tests for layers and their gradients on the GPU
|
||||
# Most of the forward passes should be fine being applied
|
||||
# to bitstype objects, but this gives higher coverage for our use-cases
|
||||
# Check that getting the gradients does not throw
|
||||
|
||||
# generic movement tests
|
||||
@testset "Basic GPU Movement" begin
|
||||
@test gradient(x -> sum(gpu(x)), rand(3,3)) isa Tuple
|
||||
@test gradient(x -> sum(cpu(x)), gpu(rand(3,3))) isa Tuple
|
||||
end
|
||||
|
||||
# TODO: These layers get into scalar indexing
|
||||
# `AlphaDropout` throws a compilation error on GPUs,
|
||||
# whereas, the rest are scalar indexing issues.
|
||||
const BROKEN_LAYERS = [DepthwiseConv,
|
||||
AlphaDropout,
|
||||
InstanceNorm,
|
||||
GroupNorm]
|
||||
|
||||
function gradtest(name::String, layers::Vector, xs = nothing, args...)
|
||||
isnothing(xs) && error("Missing input to test the layers against.")
|
||||
@testset "$name GPU grad tests" begin
|
||||
for layer in layers
|
||||
@testset "$layer GPU grad test" begin
|
||||
l = gpu(layer(args...))
|
||||
xs = gpu(xs)
|
||||
if any(x -> isa(l, x), BROKEN_LAYERS)
|
||||
ps = Flux.params(l)
|
||||
@test_broken gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
|
||||
else
|
||||
ps = Flux.params(l)
|
||||
@test gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
|
||||
gs = gradient(() -> sum(l(xs)), ps)
|
||||
|
||||
# Handle pooling layers
|
||||
if !isempty(ps)
|
||||
@test gs[first(ps)] isa Flux.CuArrays.CuArray
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Repeats from Conv, CrossCor
|
||||
|
||||
r = rand(Float32, 28, 28, 1, 1)
|
||||
conv_layers = [Conv, ConvTranspose, CrossCor, DepthwiseConv]
|
||||
gradtest("Conv", conv_layers, r, (2,2), 1=>3)
|
||||
|
||||
pooling_layers = [MaxPool, MeanPool]
|
||||
gradtest("Pooling", pooling_layers, r, (2,2))
|
||||
|
||||
dropout_layers = [Dropout, AlphaDropout]
|
||||
gradtest("Dropout", dropout_layers, r, 0.5f0)
|
||||
|
||||
norm_layers = [LayerNorm, BatchNorm]
|
||||
gradtest("Normalising", norm_layers, rand(Float32, 28,28,3,1), 1)
|
||||
|
||||
instancenorm = [InstanceNorm]
|
||||
gradtest("InstanceNorm", instancenorm, r, 1)
|
||||
|
||||
groupnorm = [GroupNorm]
|
||||
gradtest("GroupNorm", groupnorm, rand(Float32, 28,28,3,1), 3, 1)
|
||||
|
||||
const stateless_layers = [Flux.mse,
|
||||
Flux.crossentropy,
|
||||
Flux.logitcrossentropy,
|
||||
Flux.normalise]
|
||||
|
||||
const stateless_layers_broadcasted = [Flux.binarycrossentropy,
|
||||
Flux.logitbinarycrossentropy]
|
||||
|
||||
function stateless_gradtest(f, args...)
|
||||
@test gradient((args...) -> sum(f(args...)), args...)[1] isa CuArray
|
||||
end
|
||||
|
||||
function stateless_gradtest_broadcasted(f, args...)
|
||||
@test gradient((args...) -> sum(f.(args...)), args...)[1] isa CuArray
|
||||
end
|
||||
|
||||
@testset "Stateless GPU grad tests" begin
|
||||
x = gpu(rand(3,3))
|
||||
y = gpu(rand(3,3))
|
||||
|
||||
for layer in stateless_layers
|
||||
if layer == Flux.normalise
|
||||
stateless_gradtest(layer, x)
|
||||
else
|
||||
stateless_gradtest(layer, x, y)
|
||||
end
|
||||
end
|
||||
|
||||
for layer in stateless_layers_broadcasted
|
||||
stateless_gradtest_broadcasted(layer, x, y)
|
||||
end
|
||||
end
|
20
test/data.jl
20
test/data.jl
|
@ -3,7 +3,6 @@
|
|||
Y = [1:5;]
|
||||
|
||||
d = DataLoader(X, batchsize=2)
|
||||
@inferred first(d)
|
||||
batches = collect(d)
|
||||
@test eltype(batches) == eltype(d) == typeof(X)
|
||||
@test length(batches) == 3
|
||||
|
@ -12,7 +11,6 @@
|
|||
@test batches[3] == X[:,5:5]
|
||||
|
||||
d = DataLoader(X, batchsize=2, partial=false)
|
||||
@inferred first(d)
|
||||
batches = collect(d)
|
||||
@test eltype(batches) == eltype(d) == typeof(X)
|
||||
@test length(batches) == 2
|
||||
|
@ -20,7 +18,6 @@
|
|||
@test batches[2] == X[:,3:4]
|
||||
|
||||
d = DataLoader((X,), batchsize=2, partial=false)
|
||||
@inferred first(d)
|
||||
batches = collect(d)
|
||||
@test eltype(batches) == eltype(d) == Tuple{typeof(X)}
|
||||
@test length(batches) == 2
|
||||
|
@ -28,7 +25,6 @@
|
|||
@test batches[2] == (X[:,3:4],)
|
||||
|
||||
d = DataLoader((X, Y), batchsize=2)
|
||||
@inferred first(d)
|
||||
batches = collect(d)
|
||||
@test eltype(batches) == eltype(d) == Tuple{typeof(X), typeof(Y)}
|
||||
@test length(batches) == 3
|
||||
|
@ -42,22 +38,6 @@
|
|||
@test batches[3][1] == X[:,5:5]
|
||||
@test batches[3][2] == Y[5:5]
|
||||
|
||||
# test with NamedTuple
|
||||
d = DataLoader((x=X, y=Y), batchsize=2)
|
||||
@inferred first(d)
|
||||
batches = collect(d)
|
||||
@test eltype(batches) == eltype(d) == NamedTuple{(:x, :y), Tuple{typeof(X), typeof(Y)}}
|
||||
@test length(batches) == 3
|
||||
@test length(batches[1]) == 2
|
||||
@test length(batches[2]) == 2
|
||||
@test length(batches[3]) == 2
|
||||
@test batches[1][1] == batches[1].x == X[:,1:2]
|
||||
@test batches[1][2] == batches[1].y == Y[1:2]
|
||||
@test batches[2][1] == batches[2].x == X[:,3:4]
|
||||
@test batches[2][2] == batches[2].y == Y[3:4]
|
||||
@test batches[3][1] == batches[3].x == X[:,5:5]
|
||||
@test batches[3][2] == batches[3].y == Y[5:5]
|
||||
|
||||
# test interaction with `train!`
|
||||
θ = ones(2)
|
||||
X = zeros(2, 10)
|
||||
|
|
|
@ -28,14 +28,6 @@ import Flux: activations
|
|||
end
|
||||
|
||||
@testset "Dense" begin
|
||||
@testset "constructors" begin
|
||||
@test size(Dense(10, 100).W) == (100, 10)
|
||||
@test Dense(rand(100,10), rand(10)).σ == identity
|
||||
|
||||
@test_throws MethodError Dense(10, 10.5)
|
||||
@test_throws MethodError Dense(10, 10.5, tanh)
|
||||
end
|
||||
|
||||
@test length(Dense(10, 5)(randn(10))) == 5
|
||||
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
|
||||
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
|
||||
|
@ -45,6 +37,7 @@ import Flux: activations
|
|||
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
|
||||
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
|
||||
|
||||
end
|
||||
|
||||
@testset "Diagonal" begin
|
||||
|
|
|
@ -1,26 +1,9 @@
|
|||
using Test
|
||||
using Flux: onehotbatch, mse, crossentropy, logitcrossentropy,
|
||||
σ, binarycrossentropy, logitbinarycrossentropy, flatten,
|
||||
xlogx, xlogy
|
||||
σ, binarycrossentropy, logitbinarycrossentropy, flatten
|
||||
|
||||
const ϵ = 1e-7
|
||||
|
||||
@testset "xlogx & xlogy" begin
|
||||
@test iszero(xlogx(0))
|
||||
@test isnan(xlogx(NaN))
|
||||
@test xlogx(2) ≈ 2.0 * log(2.0)
|
||||
@inferred xlogx(2)
|
||||
@inferred xlogx(0)
|
||||
|
||||
@test iszero(xlogy(0, 1))
|
||||
@test isnan(xlogy(NaN, 1))
|
||||
@test isnan(xlogy(1, NaN))
|
||||
@test isnan(xlogy(NaN, NaN))
|
||||
@test xlogy(2, 3) ≈ 2.0 * log(3.0)
|
||||
@inferred xlogy(2, 3)
|
||||
@inferred xlogy(0, 1)
|
||||
end
|
||||
|
||||
@testset "losses" begin
|
||||
# First, regression-style y's
|
||||
y = [1, 1, 0, 0]
|
||||
|
@ -29,15 +12,15 @@ end
|
|||
@testset "mse" begin
|
||||
@test mse(ŷ, y) ≈ (.1^2 + .9^2)/2
|
||||
end
|
||||
|
||||
|
||||
@testset "mae" begin
|
||||
@test Flux.mae(ŷ, y) ≈ 1/2
|
||||
end
|
||||
|
||||
|
||||
@testset "huber_loss" begin
|
||||
@test Flux.huber_loss(ŷ, y) ≈ 0.20500000000000002
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
y = [123.0,456.0,789.0]
|
||||
ŷ = [345.0,332.0,789.0]
|
||||
@testset "msle" begin
|
||||
|
@ -52,7 +35,6 @@ end
|
|||
lossvalue = 1.203972804325936
|
||||
|
||||
@testset "crossentropy" begin
|
||||
@test crossentropy([0.1,0.0,0.9], [0.1,0.0,0.9]) ≈ crossentropy([0.1,0.9], [0.1,0.9])
|
||||
@test crossentropy(ŷ, y) ≈ lossvalue
|
||||
end
|
||||
|
||||
|
@ -81,47 +63,46 @@ end
|
|||
@testset "logitbinarycrossentropy" begin
|
||||
@test logitbinarycrossentropy.(logŷ, y) ≈ binarycrossentropy.(σ.(logŷ), y; ϵ=0)
|
||||
end
|
||||
|
||||
|
||||
y = [1 2 3]
|
||||
ŷ = [4.0 5.0 6.0]
|
||||
@testset "kldivergence" begin
|
||||
@test Flux.kldivergence([0.1,0.0,0.9], [0.1,0.0,0.9]) ≈ Flux.kldivergence([0.1,0.9], [0.1,0.9])
|
||||
@test Flux.kldivergence(ŷ, y) ≈ -1.7661057888493457
|
||||
@test Flux.kldivergence(y, y) ≈ 0
|
||||
@test Flux.kldivergence(y, y) ≈ 0
|
||||
end
|
||||
|
||||
|
||||
y = [1 2 3 4]
|
||||
ŷ = [5.0 6.0 7.0 8.0]
|
||||
@testset "hinge" begin
|
||||
@test Flux.hinge(ŷ, y) ≈ 0
|
||||
@test Flux.hinge(y, 0.5 .* y) ≈ 0.125
|
||||
end
|
||||
|
||||
|
||||
@testset "squared_hinge" begin
|
||||
@test Flux.squared_hinge(ŷ, y) ≈ 0
|
||||
@test Flux.squared_hinge(y, 0.5 .* y) ≈ 0.0625
|
||||
end
|
||||
|
||||
|
||||
y = [0.1 0.2 0.3]
|
||||
ŷ = [0.4 0.5 0.6]
|
||||
@testset "poisson" begin
|
||||
@test Flux.poisson(ŷ, y) ≈ 0.6278353988097339
|
||||
@test Flux.poisson(y, y) ≈ 0.5044459776946685
|
||||
end
|
||||
|
||||
|
||||
y = [1.0 0.5 0.3 2.4]
|
||||
ŷ = [0 1.4 0.5 1.2]
|
||||
@testset "dice_coeff_loss" begin
|
||||
@test Flux.dice_coeff_loss(ŷ, y) ≈ 0.2799999999999999
|
||||
@test Flux.dice_coeff_loss(y, y) ≈ 0.0
|
||||
end
|
||||
|
||||
|
||||
@testset "tversky_loss" begin
|
||||
@test Flux.tversky_loss(ŷ, y) ≈ -0.06772009029345383
|
||||
@test Flux.tversky_loss(ŷ, y, β = 0.8) ≈ -0.09490740740740744
|
||||
@test Flux.tversky_loss(y, y) ≈ -0.5576923076923075
|
||||
end
|
||||
|
||||
|
||||
@testset "no spurious promotions" begin
|
||||
for T in (Float32, Float64)
|
||||
y = rand(T, 2)
|
||||
|
|
|
@ -57,57 +57,35 @@ end
|
|||
end
|
||||
|
||||
@testset "ExpDecay" begin
|
||||
|
||||
@testset "Sanity Check" begin
|
||||
o = ExpDecay(0.2, 0.5, 1, 1e-3)
|
||||
p = [0.0]
|
||||
steps = 1:8
|
||||
eta_expected = @. max(o.eta * 0.5 ^ steps, o.clip)
|
||||
eta_actual = [Optimise.apply!(o, p, [1.0])[1] for _ in steps]
|
||||
@test eta_actual == eta_expected
|
||||
end
|
||||
|
||||
w = randn(10, 10)
|
||||
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
|
||||
w1 = randn(10,10)
|
||||
loss(x) = Flux.mse(w*x, w1*x)
|
||||
flag = 1
|
||||
decay_steps = []
|
||||
for t = 1:10^5
|
||||
prev_eta = o.eta
|
||||
θ = Params([w1])
|
||||
x = rand(10)
|
||||
θ̄ = gradient(() -> loss(x), θ)
|
||||
prev_grad = collect(θ̄[w1])
|
||||
delta = Optimise.apply!(o, w1, θ̄[w1])
|
||||
w1 .-= delta
|
||||
new_eta = o.eta
|
||||
if new_eta != prev_eta
|
||||
push!(decay_steps, t)
|
||||
end
|
||||
array = fill(o.eta, size(prev_grad))
|
||||
if array .* prev_grad != delta
|
||||
flag = 0
|
||||
end
|
||||
end
|
||||
@test flag == 1
|
||||
# Test to check if decay happens at decay steps. Eta reaches clip value (1e-4) after 4000 steps (decay by 0.1 every 1000 steps starting at 0.1).
|
||||
ground_truth = []
|
||||
for i in 1:4
|
||||
push!(ground_truth, 1000*i) # Expected decay steps for this example.
|
||||
end
|
||||
@test decay_steps == ground_truth
|
||||
@test o.eta == o.clip
|
||||
end
|
||||
|
||||
@testset "Clipping" begin
|
||||
w = randn(10, 10)
|
||||
loss(x) = sum(w * x)
|
||||
θ = Params([w])
|
||||
x = 1000 * randn(10)
|
||||
w̄ = gradient(() -> loss(x), θ)[w]
|
||||
w̄_value = Optimise.apply!(ClipValue(1.0), w, copy(w̄))
|
||||
@test all(w̄_value .<= 1)
|
||||
w̄_norm = Optimise.apply!(ClipNorm(1.0), w, copy(w̄))
|
||||
@test norm(w̄_norm) <= 1
|
||||
end
|
||||
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
|
||||
w1 = randn(10,10)
|
||||
loss(x) = Flux.mse(w*x, w1*x)
|
||||
flag = 1
|
||||
decay_steps = []
|
||||
for t = 1:10^5
|
||||
prev_eta = o.eta
|
||||
θ = Params([w1])
|
||||
x = rand(10)
|
||||
θ̄ = gradient(() -> loss(x), θ)
|
||||
prev_grad = collect(θ̄[w1])
|
||||
delta = Optimise.apply!(o, w1, θ̄[w1])
|
||||
w1 .-= delta
|
||||
new_eta = o.eta
|
||||
if new_eta != prev_eta
|
||||
push!(decay_steps, t)
|
||||
end
|
||||
array = fill(o.eta, size(prev_grad))
|
||||
if array .* prev_grad != delta
|
||||
flag = 0
|
||||
end
|
||||
end
|
||||
@test flag == 1
|
||||
# Test to check if decay happens at decay steps. Eta reaches clip value eventually.
|
||||
ground_truth = []
|
||||
for i in 1:11
|
||||
push!(ground_truth, 1000*i) # Expected decay steps for this example.
|
||||
end
|
||||
@test decay_steps == ground_truth
|
||||
@test o.eta == o.clip
|
||||
end
|
||||
|
|
Loading…
Reference in New Issue