Compare commits

..

12 Commits

Author SHA1 Message Date
Mike J Innes
0c110d70da colors.jl support 2019-03-12 14:25:17 +00:00
Mike J Innes
02c4ada05a very basic step! implementation 2019-03-12 12:21:12 +00:00
Mike J Innes
bde51aa5a6 rm more deprecations 2019-03-12 10:17:27 +00:00
Mike J Innes
46e245b87d update stuff 2019-03-12 10:08:56 +00:00
Mike J Innes
36055a9907 rm optimiser deprecations 2019-03-12 10:08:51 +00:00
Mike J Innes
aa17cd77d0 test on 1.1 2019-03-08 15:10:26 +00:00
Mike J Innes
66cc95b927 passing tests... ish 2019-03-08 15:00:32 +00:00
Mike J Innes
abf7f491ed fix most tests 2019-03-08 14:49:28 +00:00
Mike J Innes
7ba176f59a move jacobian test to Tracker 2019-03-08 13:29:11 +00:00
Mike J Innes
5514a0f53f implement #643 2019-03-08 13:29:11 +00:00
Mike J Innes
2f256b393a rm data/param 2019-03-08 12:13:58 +00:00
Mike J Innes
e3f05eeaf3 break all the things 2019-03-08 12:06:09 +00:00
78 changed files with 2292 additions and 4615 deletions

1
.gitattributes vendored
View File

@ -1,2 +1 @@
paper/* linguist-documentation
CITATION.bib linguist-detectable=false

1
.github/FUNDING.yml vendored
View File

@ -1 +0,0 @@
custom: https://numfocus.salsalabs.org/donate-to-julia/index.html

View File

@ -1,12 +0,0 @@
[Please delete this text and describe your change here.
For bugfixes, please detail the bug and include a test case which your patch fixes.
If you are adding a new feature, please clearly describe the design, its rationale, the possible alternatives considered.
It is easiest to merge new features when there is clear precedent in other systems; we need to know we're taking
the right direction since it can be hard to change later.]
### PR Checklist
- [ ] Tests are added
- [ ] Entry in NEWS.md
- [ ] Documentation, if applicable
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).

View File

@ -1,16 +0,0 @@
name: CompatHelper
on:
schedule:
- cron: '00 00 * * *'
jobs:
CompatHelper:
runs-on: ubuntu-latest
steps:
- name: Pkg.add("CompatHelper")
run: julia -e 'using Pkg; Pkg.add("CompatHelper")'
- name: CompatHelper.main()
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: julia -e 'using CompatHelper; CompatHelper.main()'

View File

@ -1,11 +0,0 @@
name: TagBot
on:
schedule:
- cron: 0 * * * *
jobs:
TagBot:
runs-on: ubuntu-latest
steps:
- uses: JuliaRegistries/TagBot@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,41 +0,0 @@
include:
- 'https://raw.githubusercontent.com/JuliaGPU/gitlab-ci/master/templates/v6.yml'
image: nvidia/cuda:10.1-cudnn7-devel-ubuntu18.04
# julia:1.0:
# extends:
# - .julia:1.0
# - .test
# tags:
# - nvidia
#
# julia:1.1:
# extends:
# - .julia:1.1
# - .test
# tags:
# - nvidia
#
# julia:1.2:
# extends:
# - .julia:1.2
# - .test
# tags:
# - nvidia
julia:1.3:
extends:
- .julia:1.3
- .test
tags:
- nvidia
julia:nightly:
extends:
- .julia:nightly
- .test
tags:
- nvidia
allow_failure: true

View File

@ -6,17 +6,17 @@ os:
# - osx
julia:
- 1.3
- 1
- 1.1
- nightly
notifications:
email: false
matrix:
allow_failures:
- julia: nightly
jobs:
include:
- stage: "Documentation"
julia: 1.3
julia: 1.0
os: linux
script:
- julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd()));
@ -24,9 +24,6 @@ jobs:
- julia --project=docs/ docs/make.jl
after_success: skip
allow_failures:
- julia: nightly
## uncomment the following lines to override the default test script
script:
- julia --color=yes -e 'using Pkg; Pkg.activate(); Pkg.instantiate(); Pkg.test()'

View File

@ -1,29 +0,0 @@
@article{Flux.jl-2018,
author = {Michael Innes and
Elliot Saba and
Keno Fischer and
Dhairya Gandhi and
Marco Concetto Rudilosso and
Neethu Mariya Joy and
Tejan Karmali and
Avik Pal and
Viral Shah},
title = {Fashionable Modelling with Flux},
journal = {CoRR},
volume = {abs/1811.01457},
year = {2018},
url = {http://arxiv.org/abs/1811.01457},
archivePrefix = {arXiv},
eprint = {1811.01457},
timestamp = {Thu, 22 Nov 2018 17:58:30 +0100},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1811-01457},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
@article{innes:2018,
author = {Mike Innes},
title = {Flux: Elegant Machine Learning with Julia},
journal = {Journal of Open Source Software},
year = {2018},
doi = {10.21105/joss.00602},
}

View File

@ -1,6 +1,6 @@
The Flux.jl package is licensed under the MIT "Expat" License:
> Copyright (c) 2016-19: Julia Computing, INc., Mike Innes and Contributors
> Copyright (c) 2016: Mike Innes.
>
> Permission is hereby granted, free of charge, to any person obtaining
> a copy of this software and associated documentation files (the

View File

@ -1,84 +1,49 @@
# This file is machine-generated - editing it directly is not advised
[[AbstractFFTs]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "051c95d6836228d120f5f4b984dd5aba1624f716"
uuid = "621f4979-c628-5d54-868e-fcf4e3e8185c"
version = "0.5.0"
[[AbstractTrees]]
deps = ["Markdown"]
git-tree-sha1 = "33e450545eaf7699da1a6e755f9ea65f14077a45"
deps = ["Markdown", "Test"]
git-tree-sha1 = "6621d9645702c1c4e6970cc6a3eae440c768000b"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.3"
version = "0.2.1"
[[Adapt]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "fd04049c7dd78cfef0b06cdc1f0f181467655712"
deps = ["LinearAlgebra", "Test"]
git-tree-sha1 = "53d8fec4f662088c1202530e338a11a919407f3b"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "1.1.0"
[[ArrayLayouts]]
deps = ["FillArrays", "LinearAlgebra"]
git-tree-sha1 = "a504dca2ac7eda8761c8f7c1ed52427a1be75a3c"
uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
version = "0.2.6"
version = "0.4.2"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BinDeps]]
deps = ["Compat", "Libdl", "SHA", "URIParser"]
git-tree-sha1 = "12093ca6cdd0ee547c39b1870e0c9c3f154d9ca9"
uuid = "9e28174c-4ba2-5203-b857-d8d62c4213ee"
version = "0.8.10"
[[BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
deps = ["Libdl", "Pkg", "SHA", "Test"]
git-tree-sha1 = "055eb2690182ebc31087859c3dd8598371d3ef9e"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10"
[[CEnum]]
git-tree-sha1 = "1b77a77c3b28e0b3f413f7567c9bb8dd9bdccd14"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.3.0"
[[CUDAapi]]
deps = ["Libdl", "Logging"]
git-tree-sha1 = "831b825d10104bd29e28f6da93312a976830717b"
uuid = "3895d2a7-ec45-59b8-82bb-cfc6a382f9b3"
version = "4.0.0"
[[CUDAdrv]]
deps = ["CEnum", "CUDAapi", "Printf"]
git-tree-sha1 = "f56bbf18c86bcff7a961a32a4947a5abb2963a29"
uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
version = "6.3.0"
[[CUDAnative]]
deps = ["Adapt", "BinaryProvider", "CEnum", "CUDAapi", "CUDAdrv", "ExprTools", "GPUCompiler", "LLVM", "Libdl", "Pkg", "Printf"]
git-tree-sha1 = "ac86db2b05fdfec96b011e25a504ffe7476e8a68"
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
version = "3.1.0"
[[CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "cab4da992adc0a64f63fa30d2db2fd8bec40cab4"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "0.5.11"
version = "0.5.3"
[[CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
deps = ["BinaryProvider", "Libdl", "Test", "TranscodingStreams"]
git-tree-sha1 = "36bbf5374c661054d41410dc53ff752972583b9b"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
version = "0.5.2"
[[ColorTypes]]
deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "c73d9cfc2a9d8433dc77f5bff4bddf46b1d78c20"
deps = ["FixedPointNumbers", "Random", "Test"]
git-tree-sha1 = "f73b0e10f2a5756de7019818a41654686da06b09"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.10.3"
version = "0.7.5"
[[Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Reexport"]
git-tree-sha1 = "1e9bba7984e78aa8cdeea7f9f7cc984ad4e4b1c7"
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Printf", "Reexport", "Test"]
git-tree-sha1 = "9f0a0210450acb91c730b730a994f8eef1d3d543"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.2"
version = "0.9.5"
[[CommonSubexpressions]]
deps = ["Test"]
@ -86,34 +51,17 @@ git-tree-sha1 = "efdaf19ab11c7889334ca247ff4c9f7c322817b0"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.2.0"
[[CompilerSupportLibraries_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.3.3+0"
[[Cthulhu]]
deps = ["CodeTracking", "InteractiveUtils", "REPL", "UUIDs", "Unicode"]
git-tree-sha1 = "f3643e78353199d3097821e806348bd83f364155"
uuid = "f68482b8-f384-11e8-15f7-abe071a5a75f"
version = "1.1.1"
[[CuArrays]]
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SparseArrays", "Statistics", "TimerOutputs"]
git-tree-sha1 = "1582b74d2322df7dd94549d4ac9d095e0f20e884"
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
version = "2.2.1"
[[DataAPI]]
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.3.0"
[[Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "195a3ffcb8b0762684b6821de18f83a16455c6ea"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "2.0.0"
[[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "af6d9c86e191c917c2276fbede1137e8ea20157f"
deps = ["InteractiveUtils", "OrderedCollections", "Random", "Serialization", "Test"]
git-tree-sha1 = "ca971f03e146cf144a9e2f2ce59674f5bf0e8038"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.17.17"
version = "0.15.0"
[[Dates]]
deps = ["Printf"]
@ -124,89 +72,50 @@ deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[DiffResults]]
deps = ["StaticArrays"]
git-tree-sha1 = "da24935df8e0c6cf28de340b958f6aac88eaa0cc"
deps = ["Compat", "StaticArrays"]
git-tree-sha1 = "34a4a1e8be7bc99bc9c611b895b5baf37a80584c"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.0.2"
version = "0.0.4"
[[DiffRules]]
deps = ["NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "eb0c34204c8410888844ada5359ac8b96292cfd1"
deps = ["Random", "Test"]
git-tree-sha1 = "dc0869fb2f5b23466b32ea799bd82c76480167f7"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.0.1"
version = "0.0.10"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[ExprTools]]
git-tree-sha1 = "6f0517056812fd6aa3af23d4b70d5325a2ae4e95"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.1"
[[FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays"]
git-tree-sha1 = "44f561e293987ffc84272cd3d2b14b0b93123d63"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.8.10"
[[FixedPointNumbers]]
git-tree-sha1 = "3ba9ea634d4c8b289d590403b4a06f8e227a6238"
deps = ["Test"]
git-tree-sha1 = "b8045033701c3b10bf2324d7203404be7aef88ba"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.8.0"
version = "0.5.3"
[[ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "869540e4367122fbffaace383a5bdc34d6e5e5ac"
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "InteractiveUtils", "LinearAlgebra", "NaNMath", "Random", "SparseArrays", "SpecialFunctions", "StaticArrays", "Test"]
git-tree-sha1 = "4c4d727f1b7e0092134fabfab6396b8945c1ea5b"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.10"
[[Functors]]
deps = ["MacroTools"]
git-tree-sha1 = "f40adc6422f548176bb4351ebd29e4abf773040a"
uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
version = "0.1.0"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[GPUArrays]]
deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"]
git-tree-sha1 = "d887693eb1bd5e1fd573262a978745481895ec7d"
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
version = "3.4.1"
[[GPUCompiler]]
deps = ["Cthulhu", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "TimerOutputs"]
git-tree-sha1 = "5275aa268ecd09640b32560e1eae90c78816e4d1"
uuid = "61eb1bfa-7361-4325-ad38-22787b887f55"
version = "0.2.0"
version = "0.10.3"
[[IRTools]]
deps = ["InteractiveUtils", "MacroTools", "Test"]
git-tree-sha1 = "90ee39f9beaaa186e4968417ea2b8ed5673c91c0"
git-tree-sha1 = "a5a47cba5f8d9a56ff683789cdd6d20ce1cb9d53"
uuid = "7869d1d1-7146-5819-86e3-90919afe41df"
version = "0.3.3"
version = "0.1.2"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[Juno]]
deps = ["Base64", "Logging", "Media", "Profile"]
git-tree-sha1 = "a686b0cf235fa3e491b79b4783c2d2382292b436"
deps = ["Base64", "Logging", "Media", "Profile", "Test"]
git-tree-sha1 = "dc568a3dbc4d0505d252d104bed03710a9a39441"
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
version = "0.8.2"
[[LLVM]]
deps = ["CEnum", "Libdl", "Printf", "Unicode"]
git-tree-sha1 = "dd3f584c3dbefe39b2a8fbafa1a3b77e31e21255"
uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
version = "1.5.1"
version = "0.5.5"
[[LibGit2]]
deps = ["Printf"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[Libdl]]
@ -220,10 +129,10 @@ uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "f7d2e3f654af75f01ec49be82c231c382214223a"
deps = ["Compat"]
git-tree-sha1 = "3fd1a3022952128935b449c33552eb65895380c1"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.5"
version = "0.4.5"
[[Markdown]]
deps = ["Base64"]
@ -236,38 +145,36 @@ uuid = "e89f7d12-3494-54d1-8411-f7d8b9ae1f27"
version = "0.5.0"
[[Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "de0a5ce9e5289f27df672ffabef4d1e5861247d5"
deps = ["Dates", "InteractiveUtils", "SparseArrays", "Test"]
git-tree-sha1 = "d1d2585677f2bd93a97cfeb8faa7a0de0f982042"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "0.4.3"
version = "0.4.0"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[NNlib]]
deps = ["BinaryProvider", "Libdl", "LinearAlgebra", "Requires", "Statistics"]
git-tree-sha1 = "d9f196d911f55aeaff11b11f681b135980783824"
deps = ["Libdl", "LinearAlgebra", "MacroTools", "Requires", "Test"]
git-tree-sha1 = "9ac5cd21484189339b27840818c4882d1b6df7fd"
repo-rev = "master"
repo-url = "https://github.com/FluxML/NNlib.jl.git"
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
version = "0.6.6"
version = "0.4.3+"
[[NaNMath]]
git-tree-sha1 = "928b8ca9b2791081dc71a51c55347c27c618760f"
deps = ["Compat"]
git-tree-sha1 = "ce3b85e484a5d4c71dd5316215069311135fa9f2"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.3"
[[OpenSpecFun_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.3+3"
version = "0.3.2"
[[OrderedCollections]]
git-tree-sha1 = "12ce190210d278e12644bcadf5b21cbdcf225cd3"
deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "85619a3f3e17bb4761fe1b1fd47f0e979f964d5b"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.2.0"
version = "1.0.2"
[[Pkg]]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[Printf]]
@ -293,10 +200,10 @@ uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "0.2.0"
[[Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "d37400976e98018ee840e0ca4f9d20baa231dc6b"
deps = ["Test"]
git-tree-sha1 = "f6fbf4ba64d295e146e49e021207993b6b48c7d1"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.0.1"
version = "0.5.2"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
@ -304,6 +211,10 @@ uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
@ -318,42 +229,42 @@ deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]]
deps = ["OpenSpecFun_jll"]
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
deps = ["BinDeps", "BinaryProvider", "Libdl", "Test"]
git-tree-sha1 = "0b45dc2e45ed77f445617b99ff2adf0f5b0f23ea"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.10.3"
version = "0.7.2"
[[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "5c06c0aeb81bef54aed4b3f446847905eb6cbda0"
deps = ["InteractiveUtils", "LinearAlgebra", "Random", "Statistics", "Test"]
git-tree-sha1 = "3841b39ed5f047db1162627bf5f80a9cd3e39ae2"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.12.3"
version = "0.10.3"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[StatsBase]]
deps = ["DataAPI", "DataStructures", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics"]
git-tree-sha1 = "a6102b1f364befdb05746f386b67c6b7e3262c45"
deps = ["DataStructures", "DelimitedFiles", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "Test"]
git-tree-sha1 = "435707791dc85a67d98d671c1c3fcf1b20b00f94"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.33.0"
version = "0.29.0"
[[Test]]
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[TimerOutputs]]
deps = ["Printf"]
git-tree-sha1 = "f458ca23ff80e46a630922c555d838303e4b9603"
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
version = "0.5.6"
[[TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "7c53c35547de1c5b9d46a4797cf6d8253807108c"
deps = ["Pkg", "Random", "Test"]
git-tree-sha1 = "90f845c65c50bc57d6ffc815dbab2a4003ccf75c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.5"
version = "0.9.1"
[[URIParser]]
deps = ["Test", "Unicode"]
git-tree-sha1 = "6ddf8244220dfda2f17539fa8c9de20d6c575b69"
uuid = "30578b45-9adc-5946-b283-645ec420af67"
version = "0.4.0"
[[UUIDs]]
deps = ["Random", "SHA"]
@ -363,25 +274,15 @@ uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[ZipFile]]
deps = ["Libdl", "Printf", "Zlib_jll"]
git-tree-sha1 = "254975fef2fc526583bb9b7c9420fe66ffe09f2f"
deps = ["BinaryProvider", "Libdl", "Printf", "Test"]
git-tree-sha1 = "4000c633efe994b2e10b31b6d91382c4b7412dac"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.9.2"
[[Zlib_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "a2e0d558f6031002e380a90613b199e37a8565bf"
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.11+10"
version = "0.8.0"
[[Zygote]]
deps = ["AbstractFFTs", "ArrayLayouts", "DiffRules", "FillArrays", "ForwardDiff", "Future", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
git-tree-sha1 = "707ceea58e2bd0ff3077ab13a92f8355181d3ee4"
deps = ["DiffRules", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions"]
git-tree-sha1 = "029cbc1d784d4a2e3f2d26d9b1631d89c2a0afb2"
repo-rev = "master"
repo-url = "https://github.com/FluxML/Zygote.jl.git"
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
version = "0.4.20"
[[ZygoteRules]]
deps = ["MacroTools"]
git-tree-sha1 = "b3b4882cc9accf6731a08cc39543fbc6b669dca8"
uuid = "700de1a5-db45-46bc-99cf-38207098b444"
version = "0.2.0"
version = "0.1.0+"

40
NEWS.md
View File

@ -1,42 +1,6 @@
# v0.11
* Change to `DataLoader`'s constructor [https://github.com/FluxML/Flux.jl/pull/1152]
* Use `DataLoader` with `NamedTuple`s, so that tensors can be accessed by name [https://github.com/FluxML/Flux.jl/pull/1221].
* Error if Dense layers weights and biases are not arrays [https://github.com/FluxML/Flux.jl/pull/1218].
# v0.10.5
* Add option for [same padding](https://github.com/FluxML/Flux.jl/pull/901) to conv and pooling layers by setting `pad=SamePad()`.
* Added option to set `bias` to [Flux.Zeros](https://github.com/FluxML/Flux.jl/pull/873) to eliminating `bias` from being trained.
* Added `GlobalMaxPool` and `GlobalMeanPool` [layers](https://github.com/FluxML/Flux.jl/pull/950) for performing global pooling operations.
* Added `ClipValue` and `ClipNorm` in this [pr](https://github.com/FluxML/Flux.jl/pull/1133) to `Flux.Optimise` to provide a cleaner API for gradient clipping.
* Added new kwarg-only [constructors](https://github.com/FluxML/Flux.jl/pull/873) for the various convolutional layers.
* Documented the convolutional layer constructors accepting `weight` and `bias` keyword arguments to supply custom arrays for those fields.
* Testing suite improvements now test for gradients of all layers along with GPU support.
* Functors have now moved to [Functors.jl](https://github.com/FluxML/Flux.jl/pull/1174) to allow for their use outside of Flux.
* Added [helper functions](https://github.com/FluxML/Flux.jl/pull/873) `Flux.convfilter` and `Flux.depthwiseconvfilter` to construct weight arrays for convolutions outside of layer constructors so as to not have to depend on the default layers for custom implementations.
# v0.10.0
* The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669)
- The dependency on Tracker.jl has been removed.
- This means Flux now does not depend on using a specialised `TrackedArray` type, and can be used with normal Array implementations directly.
- Tracker compatibility is maintained in most common cases, but Zygote will be the preferred AD backend for Flux from now on.
* The CUDNN wrappers have been [moved from Flux into CuArrays](https://github.com/FluxML/Flux.jl/pull/874), to allow for better supporting the CUDA backend, and improve user experience, not to mention making Flux lean.
* `*crossentropy` functions now [work as expected with CuArrays](https://github.com/FluxML/Flux.jl/pull/926). [PR for binarycrossentropy](https://github.com/FluxML/Flux.jl/pull/940).
* Added [clearer docs](https://github.com/FluxML/Flux.jl/pull/904) around training and the Optimiser interface.
* [Layer initialisations](https://github.com/FluxML/Flux.jl/pull/937) have been improved with a clearer API on how to extend it for other purposes.
* [Better messaging around CUDA availability](https://github.com/FluxML/Flux.jl/pull/924), with hooks to initialize the GPU as default where possible.
* `@treelike` has been formalised as a [functor](https://github.com/FluxML/Flux.jl/pull/865), with an effective deprecation.
* `testmode!` is deprecated in favour of [istraining](https://github.com/FluxML/Flux.jl/pull/669)
# v0.9.0
* [Depthwise convolutional layer API changes](https://github.com/FluxML/Flux.jl/pull/756) from `in => mult` channel specification to `in => out` channel specification, and deprecates implicit `out` constructor.
* New [SkipConnection](https://github.com/FluxML/Flux.jl/pull/446), which can be used to train residual neural network architectures.
* New [RADAM](https://github.com/FluxML/Flux.jl/pull/842) optimiser.
# v0.8.0
* [Dropout now has a `dims` argument for specifying the unbroadcast dimensions.](https://github.com/FluxML/Flux.jl/pull/563)
* New [ConvTranspose layer](https://github.com/FluxML/Flux.jl/pull/311).
* New [Maxout layer](https://github.com/FluxML/Flux.jl/pull/647)
* Datasets are now [hash verified on download](https://github.com/FluxML/Flux.jl/pull/585) to avoid corruption.
* We now [zero the initial state for RNNs](https://github.com/FluxML/Flux.jl/pull/590/).
* [Normalisation can now work on arbitrary `dims`.](https://github.com/FluxML/Flux.jl/pull/592)
@ -45,10 +9,6 @@
* New "performance tips" [section of the docs](https://github.com/FluxML/Flux.jl/pull/615).
* The training loop is [now more readable](https://github.com/FluxML/Flux.jl/pull/651) and better shows how to use the lower-level APIs.
* New [AlphaDropout](https://github.com/FluxML/Flux.jl/pull/656).
* [Data.Iris](https://github.com/FluxML/Flux.jl/pull/652) makes Fisher's Iris dataset available with `Iris.labels` and `Iris.features`.
* New [InstanceNorm](https://github.com/FluxML/Flux.jl/pull/634), as popularized by [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
* New [GroupNorm](https://github.com/FluxML/Flux.jl/pull/696), as described in [Group Normalization](https://arxiv.org/abs/1803.08494).
* New [CrossCor](https://github.com/FluxML/Flux.jl/pull/762).
AD Changes:

View File

@ -1,15 +1,11 @@
name = "Flux"
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
version = "0.11.0-DEV"
[deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
Adapt = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
CodecZlib = "944b1d66-785c-5afd-91f1-9de20f533193"
Colors = "5ae59095-9a9b-59fe-a467-6f913c188581"
CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
@ -18,34 +14,10 @@ Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SHA = "ea8e919c-243c-51af-8825-aaa63cd721ce"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[compat]
AbstractTrees = "0.2, 0.3"
Adapt = "1, 2.0"
CodecZlib = "0.5, 0.6, 0.7"
Colors = "0.8, 0.9, 0.10, 0.11, 0.12"
CuArrays = "2"
Functors = "0.1"
Juno = "0.5, 0.6, 0.7, 0.8"
MacroTools = "0.3, 0.4, 0.5"
NNlib = "0.6"
Reexport = "0.2"
StatsBase = "0"
ZipFile = "0.7, 0.8, 0.9"
Zygote = "0.4.13"
julia = "1.3"
[extras]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
IterTools = "c8e1da08-722c-5040-9ed9-7db0dc04731e"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[targets]
test = ["Test", "Documenter", "IterTools", "LinearAlgebra"]

View File

@ -2,14 +2,98 @@
<img width="400px" src="https://raw.githubusercontent.com/FluxML/fluxml.github.io/master/logo.png"/>
</p>
[![Build Status](https://travis-ci.org/FluxML/Flux.jl.svg?branch=master)](https://travis-ci.org/FluxML/Flux.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://slackinvite.julialang.org/) [![DOI](https://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602)
[![Build Status](https://travis-ci.org/FluxML/Flux.jl.svg?branch=master)](https://travis-ci.org/FluxML/Flux.jl) [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://fluxml.github.io/Flux.jl/stable/) [![](https://img.shields.io/badge/chat-on%20slack-yellow.svg)](https://slackinvite.julialang.org/) [![DOI](http://joss.theoj.org/papers/10.21105/joss.00602/status.svg)](https://doi.org/10.21105/joss.00602)
Flux is an elegant approach to machine learning. It's a 100% pure-Julia stack, and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable.
```julia
] add Flux
julia> Pkg.add("Flux")
```
See the [documentation](https://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
See the [documentation](http://fluxml.github.io/Flux.jl/) or the [model zoo](https://github.com/FluxML/model-zoo/) for examples.
If you use Flux in your research, please [cite](CITATION.bib) our work.
If you use Flux in research, please cite the following paper:
```
@article{innes:2018,
author = {Mike Innes},
title = {Flux: Elegant Machine Learning with Julia},
journal = {Journal of Open Source Software},
year = {2018},
doi = {10.21105/joss.00602},
}
```
## Features
Flux has powerful high-level features, and common architectures can be defined in a few lines.
```julia
model = Chain(
Dense(768, 128, σ),
LSTM(128, 256),
LSTM(256, 128),
Dense(128, 10),
softmax)
loss(x, y) = crossentropy(model(x), y)
Flux.train!(loss, data, ADAM(...))
```
Yet you can easily strip away the layers, and directly write the mathematics for your problem. Flux will seamlessly take gradients of any Julia code, so your model looks just like the paper.
```julia
W = param(randn(2, 10))
b = param(randn(2))
y(x) = σ.(W * x .+ b)
```
If that's *still* not enough, you can go as deep as you want, even writing your own CUDA kernels with [CUDAnative](https://github.com/JuliaGPU/CUDAnative.jl)! All this can be freely mixed-and-matched in a single model or script, and it all runs interactively via Jupyter or Juno.
```julia
function gpu_add(a, b, c)
i = (blockIdx().x-1) * blockDim().x + threadIdx().x
c[i] = a[i] + b[i]
return nothing
end
```
Unusual architectures are no problem in Flux, as you can use all the loops, control flow and even macros that you're used to. Here's a Tree RNN in 4 lines.
```julia
tree() = rand() < 0.5 ? rand(10) : (tree(), tree()) # dummy data
shrink = Dense(20, 10)
combine(a, b) = shrink([a; b])
model(x) = x
model(x::Tuple) = combine(model(x[1]), model(x[2]))
model(tree()) # Sample output
```
Despite this flexibility, Julia's advanced compiler lets us do some powerful optimisations. For example, this definition of `sigmoid` automatically gets fused into a *single* GPU kernel so it's really fast.
```julia
sigmoid(xs) = 1 ./ (1 .+ exp.(.-xs))
```
Similarly, Flux is the first dynamic framework to support [compiling to the browser](https://fluxml.github.io/experiments/) and model import via [formats like ONNX](https://github.com/FluxML/ONNX.jl/), both of which are thinly-veiled compiler problems.
For more on our philosophy on machine learning, check out our article [On Machine Learning & Programming Languages](https://julialang.org/blog/2017/12/ml&pl).
## Contributing & Help
For general questions and help, check out Julia's [community forum](https://discourse.julialang.org/c/domain/ML).
Flux development is carried out via our [GitHub issues](https://github.com/FluxML/Flux.jl/issues), so feel free to open feature requests or PRs here.
For more informal discussions we'd love to have you on the [Julia slack](https://slackinvite.julialang.org/), where we hang out on the #machine-learning channel.
## Related Packages
Check out [Metalhead.jl](https://github.com/FluxML/Metalhead.jl) for common computer vision datasets and trained models.
[MLDatasets.jl](https://github.com/JuliaML/MLDatasets.jl) provides further common datasets.

12
REQUIRE Normal file
View File

@ -0,0 +1,12 @@
julia 1.0
Juno
MacroTools 0.3.3
NNlib
Requires
Adapt 0.4
CodecZlib
Colors
ZipFile
AbstractTrees
Reexport
StatsBase

View File

@ -1,4 +0,0 @@
status = [
"ci/gitlab%"
]
timeout-sec = 7200

296
docs/Manifest.toml Normal file
View File

@ -0,0 +1,296 @@
# This file is machine-generated - editing it directly is not advised
[[AbstractTrees]]
deps = ["Markdown", "Test"]
git-tree-sha1 = "6621d9645702c1c4e6970cc6a3eae440c768000b"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.2.1"
[[Adapt]]
deps = ["LinearAlgebra", "Test"]
git-tree-sha1 = "53d8fec4f662088c1202530e338a11a919407f3b"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "0.4.2"
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BinDeps]]
deps = ["Compat", "Libdl", "SHA", "URIParser"]
git-tree-sha1 = "12093ca6cdd0ee547c39b1870e0c9c3f154d9ca9"
uuid = "9e28174c-4ba2-5203-b857-d8d62c4213ee"
version = "0.8.10"
[[BinaryProvider]]
deps = ["Libdl", "Pkg", "SHA", "Test"]
git-tree-sha1 = "055eb2690182ebc31087859c3dd8598371d3ef9e"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.3"
[[CodecZlib]]
deps = ["BinaryProvider", "Libdl", "Test", "TranscodingStreams"]
git-tree-sha1 = "36bbf5374c661054d41410dc53ff752972583b9b"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.5.2"
[[ColorTypes]]
deps = ["FixedPointNumbers", "Random", "Test"]
git-tree-sha1 = "f73b0e10f2a5756de7019818a41654686da06b09"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.7.5"
[[Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Printf", "Reexport", "Test"]
git-tree-sha1 = "9f0a0210450acb91c730b730a994f8eef1d3d543"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.9.5"
[[CommonSubexpressions]]
deps = ["Test"]
git-tree-sha1 = "efdaf19ab11c7889334ca247ff4c9f7c322817b0"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.2.0"
[[Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "195a3ffcb8b0762684b6821de18f83a16455c6ea"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "2.0.0"
[[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections", "Random", "Serialization", "Test"]
git-tree-sha1 = "ca971f03e146cf144a9e2f2ce59674f5bf0e8038"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.15.0"
[[Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[DiffResults]]
deps = ["Compat", "StaticArrays"]
git-tree-sha1 = "34a4a1e8be7bc99bc9c611b895b5baf37a80584c"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "0.0.4"
[[DiffRules]]
deps = ["Random", "Test"]
git-tree-sha1 = "dc0869fb2f5b23466b32ea799bd82c76480167f7"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "0.0.10"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[DocStringExtensions]]
deps = ["LibGit2", "Markdown", "Pkg", "Test"]
git-tree-sha1 = "1df01539a1c952cef21f2d2d1c092c2bcf0177d7"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.6.0"
[[Documenter]]
deps = ["Base64", "DocStringExtensions", "InteractiveUtils", "LibGit2", "Logging", "Markdown", "Pkg", "REPL", "Random", "Test", "Unicode"]
git-tree-sha1 = "a8c41ba3d0861240dbec942ee1d0f86c57c37c1c"
uuid = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
version = "0.21.5"
[[FixedPointNumbers]]
deps = ["Test"]
git-tree-sha1 = "b8045033701c3b10bf2324d7203404be7aef88ba"
uuid = "53c48c17-4a7d-5ca2-90c5-79b7896eea93"
version = "0.5.3"
[[Flux]]
deps = ["AbstractTrees", "Adapt", "CodecZlib", "Colors", "Juno", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SHA", "Statistics", "StatsBase", "Test", "Tracker", "ZipFile"]
path = ".."
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
version = "0.7.3+"
[[ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "InteractiveUtils", "LinearAlgebra", "NaNMath", "Random", "SparseArrays", "SpecialFunctions", "StaticArrays", "Test"]
git-tree-sha1 = "4c4d727f1b7e0092134fabfab6396b8945c1ea5b"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.3"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[Juno]]
deps = ["Base64", "Logging", "Media", "Profile", "Test"]
git-tree-sha1 = "ce6246e19061e36cbdce954caaae717498daeed8"
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
version = "0.5.4"
[[LibGit2]]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[LinearAlgebra]]
deps = ["Libdl"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MacroTools]]
deps = ["Compat"]
git-tree-sha1 = "3fd1a3022952128935b449c33552eb65895380c1"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.4.5"
[[Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[Media]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "75a54abd10709c01f1b86b84ec225d26e840ed58"
uuid = "e89f7d12-3494-54d1-8411-f7d8b9ae1f27"
version = "0.5.0"
[[Missings]]
deps = ["Dates", "InteractiveUtils", "SparseArrays", "Test"]
git-tree-sha1 = "d1d2585677f2bd93a97cfeb8faa7a0de0f982042"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "0.4.0"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[NNlib]]
deps = ["Libdl", "LinearAlgebra", "MacroTools", "Requires", "Test"]
git-tree-sha1 = "51330bb45927379007e089997bf548fbe232589d"
uuid = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
version = "0.4.3"
[[NaNMath]]
deps = ["Compat"]
git-tree-sha1 = "ce3b85e484a5d4c71dd5316215069311135fa9f2"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.2"
[[OrderedCollections]]
deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "85619a3f3e17bb4761fe1b1fd47f0e979f964d5b"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.0.2"
[[Pkg]]
deps = ["Dates", "LibGit2", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[Profile]]
deps = ["Printf"]
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
[[REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[Random]]
deps = ["Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[Reexport]]
deps = ["Pkg"]
git-tree-sha1 = "7b1d07f411bc8ddb7977ec7f377b97b158514fe0"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "0.2.0"
[[Requires]]
deps = ["Test"]
git-tree-sha1 = "f6fbf4ba64d295e146e49e021207993b6b48c7d1"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "0.5.2"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[SortingAlgorithms]]
deps = ["DataStructures", "Random", "Test"]
git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "0.3.1"
[[SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]]
deps = ["BinDeps", "BinaryProvider", "Libdl", "Test"]
git-tree-sha1 = "0b45dc2e45ed77f445617b99ff2adf0f5b0f23ea"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.7.2"
[[StaticArrays]]
deps = ["InteractiveUtils", "LinearAlgebra", "Random", "Statistics", "Test"]
git-tree-sha1 = "3841b39ed5f047db1162627bf5f80a9cd3e39ae2"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.10.3"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[StatsBase]]
deps = ["DataStructures", "DelimitedFiles", "LinearAlgebra", "Missings", "Printf", "Random", "SortingAlgorithms", "SparseArrays", "Statistics", "Test"]
git-tree-sha1 = "435707791dc85a67d98d671c1c3fcf1b20b00f94"
uuid = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
version = "0.29.0"
[[Test]]
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[Tracker]]
deps = ["Adapt", "DiffRules", "ForwardDiff", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Printf", "Random", "Requires", "SpecialFunctions", "Statistics", "Test"]
git-tree-sha1 = "4eeea9f0ef9b8c7d1c5c5b1f8f68cb9b7f45d7df"
uuid = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
version = "0.1.0"
[[TranscodingStreams]]
deps = ["Pkg", "Random", "Test"]
git-tree-sha1 = "90f845c65c50bc57d6ffc815dbab2a4003ccf75c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.1"
[[URIParser]]
deps = ["Test", "Unicode"]
git-tree-sha1 = "6ddf8244220dfda2f17539fa8c9de20d6c575b69"
uuid = "30578b45-9adc-5946-b283-645ec420af67"
version = "0.4.0"
[[UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[ZipFile]]
deps = ["BinaryProvider", "Libdl", "Printf", "Test"]
git-tree-sha1 = "4000c633efe994b2e10b31b6d91382c4b7412dac"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.8.0"

View File

@ -1,6 +1,4 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
[compat]
Documenter = "0.24"

View File

@ -1,36 +1,27 @@
using Documenter, Flux, NNlib
DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true)
makedocs(modules=[Flux, NNlib],
doctest = VERSION >= v"1.4",
doctest = true,
analytics = "UA-36890222-9",
sitename = "Flux",
# Uncomment below for local build
#format = Documenter.HTML(prettyurls = false),
assets = ["assets/flux.css"],
pages = ["Home" => "index.md",
"Building Models" =>
["Basics" => "models/basics.md",
"Recurrence" => "models/recurrence.md",
"Regularisation" => "models/regularisation.md",
"Model Reference" => "models/layers.md",
"Advanced Model Building" => "models/advanced.md",
"NNlib" => "models/nnlib.md"],
"Handling Data" =>
["One-Hot Encoding" => "data/onehot.md",
"DataLoader" => "data/dataloader.md"],
"Model Reference" => "models/layers.md"],
"Training Models" =>
["Optimisers" => "training/optimisers.md",
"Training" => "training/training.md"],
"One-Hot Encoding" => "data/onehot.md",
"GPU Support" => "gpu.md",
"Saving & Loading" => "saving.md",
"The Julia Ecosystem" => "ecosystem.md",
"Utility Functions" => "utilities.md",
"Performance Tips" => "performance.md",
"Datasets" => "datasets.md",
"Community" => "community.md"],
format = Documenter.HTML(
analytics = "UA-36890222-9",
assets = ["assets/flux.css"],
prettyurls = get(ENV, "CI", nothing) == "true"),
)
"Internals" =>
["Backpropagation" => "internals/tracker.md"],
"Community" => "community.md"])
deploydocs(repo = "github.com/FluxML/Flux.jl.git",
target = "build",
push_preview = true)
deploydocs(repo = "github.com/FluxML/Flux.jl.git")

View File

@ -1,5 +1,5 @@
# Community
All Flux users are welcome to join our community on the [Julia forum](https://discourse.julialang.org/), or the [slack](https://discourse.julialang.org/t/announcing-a-julia-slack/4866) (channel #machine-learning). If you have questions or issues we'll try to help you out.
All Flux users are welcome to join our community on the [Julia forum](https://discourse.julialang.org/), the [slack](https://discourse.julialang.org/t/announcing-a-julia-slack/4866) (channel #machine-learning), or Flux's [Gitter](https://gitter.im/FluxML/Lobby). If you have questions or issues we'll try to help you out.
If you're interested in hacking on Flux, the [source code](https://github.com/FluxML/Flux.jl) is open and easy to understand -- it's all just the same Julia code you work with normally. You might be interested in our [intro issues](https://github.com/FluxML/Flux.jl/issues?q=is%3Aopen+is%3Aissue+label%3A%22help+wanted%22) to get started.

View File

@ -1,6 +0,0 @@
# DataLoader
Flux provides the `DataLoader` type in the `Flux.Data` module to handle iteration over mini-batches of data.
```@docs
Flux.Data.DataLoader
```

View File

@ -7,15 +7,15 @@ julia> using Flux: onehot, onecold
julia> onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector:
0
1
0
false
true
false
julia> onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector:
0
0
1
false
false
true
```
The inverse is `onecold` (which can take a general probability distribution, as well as just booleans).
@ -31,11 +31,6 @@ julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
:c
```
```@docs
Flux.onehot
Flux.onecold
```
## Batches
`onehotbatch` creates a batch (matrix) of one-hot vectors, and `onecold` treats matrices as batches.
@ -57,7 +52,3 @@ julia> onecold(ans, [:a, :b, :c])
```
Note that these operations returned `OneHotVector` and `OneHotMatrix` rather than `Array`s. `OneHotVector`s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.
```@docs
Flux.onehotbatch
```

View File

@ -1,20 +0,0 @@
# Datasets
Flux includes several standard machine learning datasets.
```@docs
Flux.Data.Iris.features()
Flux.Data.Iris.labels()
Flux.Data.MNIST.images()
Flux.Data.MNIST.labels()
Flux.Data.FashionMNIST.images()
Flux.Data.FashionMNIST.labels()
Flux.Data.CMUDict.phones()
Flux.Data.CMUDict.symbols()
Flux.Data.CMUDict.rawdict()
Flux.Data.CMUDict.cmudict()
Flux.Data.Sentiment.train()
Flux.Data.Sentiment.test()
Flux.Data.Sentiment.dev()
```

View File

@ -1,21 +0,0 @@
# The Julia Ecosystem
One of the main strengths of Julia lies in an ecosystem of packages
globally providing a rich and consistent user experience.
This is a non-exhaustive list of Julia packages, nicely complementing `Flux` in typical
machine learning and deep learning workflows:
- [ArgParse.jl](https://github.com/carlobaldassi/ArgParse.jl): package for parsing command-line arguments to Julia programs.
- [Augmentor.jl](https://github.com/Evizero/Augmentor.jl): a fast image augmentation library in Julia for machine learning.
- [BSON.jl](https://github.com/JuliaIO/BSON.jl): package for working with the Binary JSON serialisation format
- [DataFrames.jl](https://github.com/joshday/OnlineStats.jl): in-memory tabular data in Julia
- [DrWatson.jl](https://github.com/JuliaDynamics/DrWatson.jl): a scientific project assistant software
- [MLDatasets.jl](https://github.com/JuliaML/MLDatasets.jl): utility package for accessing common machine learning datasets
- [OnlineStats.jl](https://github.com/joshday/OnlineStats.jl): single-pass algorithms for statistics
- [Parameters.jl](https://github.com/mauro3/Parameters.jl): types with default field values, keyword constructors and (un-)pack macros
- [ProgressMeters.jl](https://github.com/timholy/ProgressMeter.jl): progress meters for long-running computations
- [TensorBoardLogger.jl](https://github.com/PhilipVinc/TensorBoardLogger.jl): easy peasy logging to [tensorboard](https://www.tensorflow.org/tensorboard) in Julia
This tight integration among Julia pakages is shown in some of the examples in the [model-zoo](https://github.com/FluxML/model-zoo) repository.

View File

@ -1,6 +1,14 @@
# GPU Support
NVIDIA GPU support should work out of the box on systems with CUDA and CUDNN installed. For more details see the [CuArrays](https://github.com/JuliaGPU/CuArrays.jl) readme.
## Installation
To get GPU support for NVIDIA graphics cards, you need to install `CuArrays.jl`
**Steps needed**
1. Install [NVIDIA toolkit](https://developer.nvidia.com/cuda-downloads)
2. Install [NVIDIA cuDNN library](https://developer.nvidia.com/cudnn)
3. In Julia's terminal run `]add CuArrays`
## GPU Usage
@ -25,16 +33,16 @@ loss(x, y) # ~ 3
Note that we convert both the parameters (`W`, `b`) and the data set (`x`, `y`) to cuda arrays. Taking derivatives and training works exactly as before.
If you define a structured model, like a `Dense` layer or `Chain`, you just need to convert the internal parameters. Flux provides `fmap`, which allows you to alter all parameters of a model at once.
If you define a structured model, like a `Dense` layer or `Chain`, you just need to convert the internal parameters. Flux provides `mapleaves`, which allows you to alter all parameters of a model at once.
```julia
d = Dense(10, 5, σ)
d = fmap(cu, d)
d.W # CuArray
d = mapleaves(cu, d)
d.W # Tracked CuArray
d(cu(rand(10))) # CuArray output
m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
m = fmap(cu, m)
m = mapleaves(cu, m)
d(cu(rand(10)))
```
@ -53,7 +61,7 @@ julia> x = rand(10) |> gpu
0.511655
julia> m(x)
5-element CuArray{Float32,1}:
Tracked 5-element CuArray{Float32,1}:
-0.30535
-0.618002

View File

@ -0,0 +1,184 @@
# Flux.Tracker
Backpropagation, or reverse-mode automatic differentiation, is handled by the `Flux.Tracker` module.
```julia
julia> using Flux.Tracker
```
Here we discuss some more advanced uses of this module, as well as covering its internals.
## Taking Gradients
In the [basics section](../models/basics.md) we covered basic usage of the `gradient` function.
```julia
using Flux.Tracker
Tracker.gradient((a, b) -> a*b, 2, 3) # (3.0 (tracked), 2.0 (tracked))
```
`gradient` is actually just a thin wrapper around the backpropagator-based interface, `forward`.
```julia
using Flux.Tracker: forward
y, back = forward((a, b) -> a*b, 2, 3) # (6.0 (tracked), Flux.Tracker.#9)
back(1) # (3.0 (tracked), 2.0 (tracked))
```
The `forward` function returns two results. The first, `y`, is the original value of the function (perhaps with tracking applied). The second, `back`, is a new function which, given a sensitivity, returns the sensitivity of the inputs to `forward` (we call this a "backpropagator"). One use of this interface is to provide custom sensitivities when outputs are not scalar.
```julia
julia> y, back = forward((a, b) -> a.*b, [1,2,3],[4,5,6])
(param([4.0, 10.0, 18.0]), Flux.Tracker.#9)
julia> back([1,1,1])
(param([4.0, 5.0, 6.0]), param([1.0, 2.0, 3.0]))
```
We can also take gradients in-place. This can be useful if you only care about first-order gradients.
```julia
a, b = param(2), param(3)
c = a*b # 6.0 (tracked)
Tracker.back!(c)
Tracker.grad(a), Tracker.grad(b) # (3.0, 2.0)
```
## Tracked Arrays
The `param` function converts a normal Julia array into a new object that, while behaving like an array, tracks extra information that allows us to calculate derivatives. For example, say we multiply two parameters:
```julia
julia> W = param([1 2; 3 4])
Tracked 2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0
julia> x = param([5, 6])
Tracked 2-element Array{Float64,1}:
5.0
6.0
julia> y = W*x
Tracked 2-element Array{Float64,1}:
17.0
39.0
```
The output `y` is also a `TrackedArray` object. We can now backpropagate sensitivities to `W` and `x` via the `back!` function, and see the gradients accumulated in the `W` and `x` tracked arrays:
```julia
julia> Tracker.back!(y, [1, -1])
julia> W.grad
2×2 Array{Float64,2}:
5.0 6.0
-5.0 -6.0
julia> x.grad
2-element Array{Float64,1}:
-2.0
-2.0
```
You may sometimes want to drop derivative information and just get the plain value back. You can do this by calling `Tracker.data(W)`.
## Custom Gradients
We can hook in to the processes above to implement custom gradients for a function or kernel. For a toy example, imagine a custom implementation of `minus`:
```julia
minus(a, b) = a - b
```
Firstly, we must tell the tracker system to stop when it sees a call to `minus`, and record it. We can do this using dispatch:
```julia
using Flux.Tracker: TrackedArray, track, @grad
minus(a::TrackedArray, b::TrackedArray) = track(minus, a, b)
```
`track` takes care of building a new `Tracked` object and recording the operation on the tape. We just need to provide a gradient definition.
```julia
@grad function minus(a, b)
return minus(data(a), data(b)), Δ -> (Δ, -Δ)
end
```
This is essentially just a way of overloading the `forward` function we saw above. We strip tracking from `a` and `b` so that we are calling the original definition of `minus` (otherwise, we'd just try to track the call again and hit an infinite regress).
Note that in the backpropagator we don't call `data(a)`; we *do* in fact want to track this, since nest AD will take a derivative through the backpropagator itself. For example, the gradient of `*` might look like this.
```julia
@grad a * b = data(a)*data(b), Δ -> (Δ*b, a*Δ)
```
We can then calculate the first derivative of `minus` as follows:
```julia
a = param([1,2,3])
b = param([3,2,1])
c = minus(a, b) # [-2.0 (tracked), 0.0 (tracked), 2.0 (tracked)]
Tracker.back!(c, 1)
Tracker.grad(a) # [1.00, 1.00, 1.00]
Tracker.grad(b) # [-1.00, -1.00, -1.00]
```
For multi-argument functions with custom gradients, you likely want to catch not just `minus(::TrackedArray, ::TrackedArray)` but also `minus(::Array, TrackedArray)` and so on. To do so, just define those extra signatures as needed:
```julia
minus(a::AbstractArray, b::TrackedArray) = Tracker.track(minus, a, b)
minus(a::TrackedArray, b::AbstractArray) = Tracker.track(minus, a, b)
```
## Tracked Internals
All `Tracked*` objects (`TrackedArray`, `TrackedReal`) are light wrappers around the `Tracked` type, which you can access via the `.tracker` field.
```julia
julia> x.tracker
Flux.Tracker.Tracked{Array{Float64,1}}(0x00000000, Flux.Tracker.Call{Nothing,Tuple{}}(nothing, ()), true, [5.0, 6.0], [-2.0, -2.0])
```
The `Tracker` stores the gradient of a given object, which we've seen before.
```julia
julia> x.tracker.grad
2-element Array{Float64,1}:
-2.0
-2.0
```
The tracker also contains a `Call` object, which simply represents a function call that was made at some point during the forward pass. For example, the `+` call would look like this:
```julia
julia> Tracker.Call(+, 1, 2)
Flux.Tracker.Call{Base.#+,Tuple{Int64,Int64}}(+, (1, 2))
```
In the case of the `y` we produced above, we can see that it stores the call that produced it -- that is, `W*x`.
```julia
julia> y.tracker.f
Flux.Tracker.Call{...}(*, (param([1.0 2.0; 3.0 4.0]), param([5.0, 6.0])))
```
Notice that because the arguments to the call may also be tracked arrays, storing their own calls, this means that `Tracker` ends up forming a data structure that records everything that happened during the forward pass (often known as a *tape*).
When we call `back!(y, [1, -1])`, the sensitivities `[1, -1]` simply get forwarded to `y`'s call (`*`), effectively calling
```julia
Tracker.back(*, [1, -1], W, x)
```
which in turn calculates the sensitivities of the arguments (`W` and `x`) and back-propagates through their calls. This is recursive, so it will walk the entire program graph and propagate gradients to the original model parameters.

View File

@ -1,73 +0,0 @@
# Advanced Model Building and Customisation
Here we will try and describe usage of some more advanced features that Flux provides to give more control over model building.
## Customising Parameter Collection for a Model
Taking reference from our example `Affine` layer from the [basics](basics.md#Building-Layers-1).
By default all the fields in the `Affine` type are collected as its parameters, however, in some cases it may be desired to hold other metadata in our "layers" that may not be needed for training, and are hence supposed to be ignored while the parameters are collected. With Flux, it is possible to mark the fields of our layers that are trainable in two ways.
The first way of achieving this is through overloading the `trainable` function.
```julia-repl
julia> @functor Affine
julia> a = Affine(rand(3,3), rand(3))
Affine{Array{Float64,2},Array{Float64,1}}([0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955])
julia> Flux.params(a) # default behavior
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955]])
julia> Flux.trainable(a::Affine) = (a.W,)
julia> Flux.params(a)
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297]])
```
Only the fields returned by `trainable` will be collected as trainable parameters of the layer when calling `Flux.params`.
Another way of achieving this is through the `@functor` macro directly. Here, we can mark the fields we are interested in by grouping them in the second argument:
```julia
Flux.@functor Affine (W,)
```
However, doing this requires the `struct` to have a corresponding constructor that accepts those parameters.
## Freezing Layer Parameters
When it is desired to not include all the model parameters (for e.g. transfer learning), we can simply not pass in those layers into our call to `params`.
Consider a simple multi-layer perceptron model where we want to avoid optimising the first two `Dense` layers. We can obtain
this using the slicing features `Chain` provides:
```julia
m = Chain(
Dense(784, 64, relu),
Dense(64, 64, relu),
Dense(32, 10)
)
ps = Flux.params(m[3:end])
```
The `Zygote.Params` object `ps` now holds a reference to only the parameters of the layers passed to it.
During training, the gradients will only be computed for (and applied to) the last `Dense` layer, therefore only that would have its parameters changed.
`Flux.params` also takes multiple inputs to make it easy to collect parameters from heterogenous models with a single call. A simple demonstration would be if we wanted to omit optimising the second `Dense` layer in the previous example. It would look something like this:
```julia
Flux.params(m[1], m[3:end])
```
Sometimes, a more fine-tuned control is needed.
We can freeze a specific parameter of a specific layer which already entered a `Params` object `ps`,
by simply deleting it from `ps`:
```julia
ps = params(m)
delete!(ps, m[2].b)
```

View File

@ -5,54 +5,55 @@
Flux's core feature is taking gradients of Julia code. The `gradient` function takes another Julia function `f` and a set of arguments, and returns the gradient with respect to each argument. (It's a good idea to try pasting these examples in the Julia terminal.)
```jldoctest basics
julia> using Flux
julia> using Flux.Tracker
julia> f(x) = 3x^2 + 2x + 1;
julia> df(x) = gradient(f, x)[1]; # df/dx = 6x + 2
julia> df(x) = Tracker.gradient(f, x; nest = true)[1]; # df/dx = 6x + 2
julia> df(2)
14
14.0 (tracked)
julia> d2f(x) = gradient(df, x)[1]; # d²f/dx² = 6
julia> d2f(x) = Tracker.gradient(df, x; nest = true)[1]; # d²f/dx² = 6
julia> d2f(2)
6
6.0 (tracked)
```
When a function has many parameters, we can get gradients of each one at the same time:
(We'll learn more about why these numbers show up as `(tracked)` below.)
When a function has many parameters, we can pass them all in explicitly:
```jldoctest basics
julia> f(x, y) = sum((x .- y).^2);
julia> f(W, b, x) = W * x + b;
julia> gradient(f, [2, 1], [2, 0])
([0, 2], [0, -2])
julia> Tracker.gradient(f, 2, 3, 4)
(4.0 (tracked), 1.0 (tracked), 2.0 (tracked))
```
But machine learning models can have *hundreds* of parameters! To handle this, Flux lets you work with collections of parameters, via `params`. You can get the gradient of all parameters used in a program without explicitly passing them in.
But machine learning models can have *hundreds* of parameters! Flux offers a nice way to handle this. We can tell Flux to treat something as a parameter via `param`. Then we can collect these together and tell `gradient` to collect the gradients of all `params` at once.
```jldoctest basics
julia> x = [2, 1];
julia> using Flux
julia> y = [2, 0];
julia> W = param(2)
2.0 (tracked)
julia> gs = gradient(params(x, y)) do
f(x, y)
end
Grads(...)
julia> b = param(3)
3.0 (tracked)
julia> gs[x]
2-element Array{Int64,1}:
0
2
julia> f(x) = W * x + b;
julia> gs[y]
2-element Array{Int64,1}:
0
-2
julia> grads = Tracker.gradient(() -> f(4), params(W, b));
julia> grads[W]
4.0
julia> grads[b]
1.0
```
Here, `gradient` takes a zero-argument function; no arguments are necessary because the `params` tell it what to differentiate.
There are a few things to notice here. Firstly, `W` and `b` now show up as *tracked*. Tracked things behave like normal numbers or arrays, but keep records of everything you do with them, allowing Flux to calculate their gradients. `gradient` takes a zero-argument function; no arguments are necessary because the `params` tell it what to differentiate.
This will come in really handy when dealing with big, complicated models. For now, though, let's start with something simple.
@ -67,28 +68,34 @@ b = rand(2)
predict(x) = W*x .+ b
function loss(x, y)
ŷ = predict(x)
sum((y .- ŷ).^2)
= predict(x)
sum((y .- ).^2)
end
x, y = rand(5), rand(2) # Dummy data
loss(x, y) # ~ 3
```
To improve the prediction we can take the gradients of `W` and `b` with respect to the loss and perform gradient descent.
To improve the prediction we can take the gradients of `W` and `b` with respect to the loss and perform gradient descent. Let's tell Flux that `W` and `b` are parameters, just like we did above.
```julia
using Flux
using Flux.Tracker
gs = gradient(() -> loss(x, y), params(W, b))
W = param(W)
b = param(b)
gs = Tracker.gradient(() -> loss(x, y), params(W, b))
```
Now that we have gradients, we can pull them out and update `W` to train the model.
Now that we have gradients, we can pull them out and update `W` to train the model. The `update!(W, Δ)` function applies `W = W + Δ`, which we can use for gradient descent.
```julia
W̄ = gs[W]
using Flux.Tracker: update!
W .-= 0.1 .* W̄
Δ = gs[W]
# Update the parameter and reset the gradient
update!(W, -0.1Δ)
loss(x, y) # ~ 2.5
```
@ -104,12 +111,12 @@ It's common to create more complex models than the linear regression above. For
```julia
using Flux
W1 = rand(3, 5)
b1 = rand(3)
W1 = param(rand(3, 5))
b1 = param(rand(3))
layer1(x) = W1 * x .+ b1
W2 = rand(2, 3)
b2 = rand(2)
W2 = param(rand(2, 3))
b2 = param(rand(2))
layer2(x) = W2 * x .+ b2
model(x) = layer2(σ.(layer1(x)))
@ -121,8 +128,8 @@ This works but is fairly unwieldy, with a lot of repetition especially as we
```julia
function linear(in, out)
W = randn(out, in)
b = randn(out)
W = param(randn(out, in))
b = param(randn(out))
x -> W * x .+ b
end
@ -143,7 +150,7 @@ struct Affine
end
Affine(in::Integer, out::Integer) =
Affine(randn(out, in), randn(out))
Affine(param(randn(out, in)), param(randn(out)))
# Overload call, so the object can be used as a function
(m::Affine)(x) = m.W * x .+ m.b
@ -213,30 +220,7 @@ m(5) # => 26
Flux provides a set of helpers for custom layers, which you can enable by calling
```julia
Flux.@functor Affine
Flux.@treelike Affine
```
This enables a useful extra set of functionality for our `Affine` layer, such as [collecting its parameters](../training/optimisers.md) or [moving it to the GPU](../gpu.md).
For some more helpful tricks, including parameter freezing, please checkout the [advanced usage guide](advanced.md).
## Utility functions
Flux provides some utility functions to help you generate models in an automated fashion.
`outdims` enables you to calculate the spatial output dimensions of layers like `Conv` when applied to input images of a given size.
Currently limited to the following layers:
- `Chain`
- `Dense`
- `Conv`
- `Diagonal`
- `Maxout`
- `ConvTranspose`
- `DepthwiseConv`
- `CrossCor`
- `MaxPool`
- `MeanPool`
```@docs
Flux.outdims
```

View File

@ -5,26 +5,16 @@ These core layers form the foundation of almost all neural networks.
```@docs
Chain
Dense
```
## Convolution and Pooling Layers
These layers are used to build convolutional neural networks (CNNs).
```@docs
Conv
MaxPool
GlobalMaxPool
MeanPool
GlobalMeanPool
```
## Additional Convolution Layers
```@docs
DepthwiseConv
ConvTranspose
CrossCor
SamePad
flatten
Flux.Zeros
Flux.convfilter
Flux.depthwiseconvfilter
```
## Recurrent Layers
@ -36,57 +26,30 @@ RNN
LSTM
GRU
Flux.Recur
Flux.reset!
```
## Other General Purpose Layers
These are marginally more obscure than the Basic Layers.
But in contrast to the layers described in the other sections are not readily grouped around a particular purpose (e.g. CNNs or RNNs).
## Activation Functions
Non-linearities that go between layers of your model. Most of these functions are defined in [NNlib](https://github.com/FluxML/NNlib.jl) but are available by default in Flux.
Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call `σ.(xs)`, `relu.(xs)` and so on.
```@docs
Maxout
SkipConnection
σ
relu
leakyrelu
elu
swish
```
## Normalisation & Regularisation
These layers don't affect the structure of the network but may improve training times or reduce overfitting.
```@docs
Flux.normalise
Flux.testmode!
BatchNorm
Flux.dropout
Dropout
AlphaDropout
LayerNorm
InstanceNorm
GroupNorm
```
### Testmode
Many normalisation layers behave differently under training and inference (testing). By default, Flux will automatically determine when a layer evaluation is part of training or inference. Still, depending on your use case, it may be helpful to manually specify when these layers should be treated as being trained or not. For this, Flux provides `Flux.testmode!`. When called on a model (e.g. a layer or chain of layers), this function will place the model into the mode specified.
```@docs
Flux.testmode!
trainmode!
```
## Cost Functions
```@docs
Flux.mae
Flux.mse
Flux.msle
Flux.huber_loss
Flux.crossentropy
Flux.logitcrossentropy
Flux.binarycrossentropy
Flux.logitbinarycrossentropy
Flux.kldivergence
Flux.poisson
Flux.hinge
Flux.squared_hinge
Flux.dice_coeff_loss
Flux.tversky_loss
```

View File

@ -1,61 +0,0 @@
# NNlib
Flux re-exports all of the functions exported by the [NNlib](https://github.com/FluxML/NNlib.jl) package.
## Activation Functions
Non-linearities that go between layers of your model. Note that, unless otherwise stated, activation functions operate on scalars. To apply them to an array you can call `σ.(xs)`, `relu.(xs)` and so on.
```@docs
NNlib.celu
NNlib.elu
NNlib.gelu
NNlib.hardsigmoid
NNlib.hardtanh
NNlib.leakyrelu
NNlib.lisht
NNlib.logcosh
NNlib.logsigmoid
NNlib.mish
NNlib.relu
NNlib.relu6
NNlib.rrelu
NNlib.selu
NNlib.sigmoid
NNlib.softplus
NNlib.softshrink
NNlib.softsign
NNlib.swish
NNlib.tanhshrink
NNlib.trelu
```
## Softmax
```@docs
NNlib.softmax
NNlib.logsoftmax
```
## Pooling
```@docs
NNlib.maxpool
NNlib.meanpool
```
## Convolution
```@docs
NNlib.conv
NNlib.depthwiseconv
```
## Batched Operations
```@docs
NNlib.batched_mul
NNlib.batched_mul!
NNlib.batched_adjoint
NNlib.batched_transpose
```

View File

@ -77,7 +77,7 @@ If you use the `RNN(10, 5)` constructor as opposed to `RNNCell` you'll s
```julia
julia> RNN(10, 5)
Recur(RNNCell(10, 5, tanh))
Recur(RNNCell(Dense(15, 5)))
```
## Sequences
@ -101,4 +101,16 @@ m = Chain(LSTM(10, 15), Dense(15, 5))
m.(seq)
```
Finally, we can reset the hidden state of the cell back to its initial value using `reset!(m)`.
## Truncating Gradients
By default, calculating the gradients in a recurrent layer involves its entire history. For example, if we call the model on 100 inputs, we'll have to calculate the gradient for those 100 calls. If we then calculate another 10 inputs we have to calculate 110 gradients this accumulates and quickly becomes expensive.
To avoid this we can *truncate* the gradient calculation, forgetting the history.
```julia
truncate!(m)
```
Calling `truncate!` wipes the slate clean, so we can call the model with more inputs without building up an expensive gradient computation.
`truncate!` makes sense when you are working with multiple chunks of a large sequence, but we may also want to work with a set of independent sequences. In this case the hidden state should be completely reset to its original value, throwing away any accumulated information. `reset!` does this for you.

View File

@ -15,8 +15,6 @@ loss(x, y) = crossentropy(softmax(m(x)), y)
We can regularise this by taking the (L2) norm of the parameters, `m.W` and `m.b`.
```julia
using LinearAlgebra
penalty() = norm(m.W) + norm(m.b)
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()
```
@ -31,7 +29,7 @@ julia> params(m)
param([0.0, 0.0, 0.0, 0.0, 0.0])
julia> sum(norm, params(m))
26.01749952921026
26.01749952921026 (tracked)
```
Here's a larger example with a multi-layer perceptron.
@ -50,21 +48,15 @@ loss(rand(28^2), rand(10))
One can also easily add per-layer regularisation via the `activations` function:
```julia
julia> using Flux: activations
julia> c = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
julia> c = Chain(Dense(10,5,σ),Dense(5,2),softmax)
Chain(Dense(10, 5, NNlib.σ), Dense(5, 2), NNlib.softmax)
julia> activations(c, rand(10))
3-element Array{Any,1}:
Float32[0.84682214, 0.6704139, 0.42177814, 0.257832, 0.36255655]
Float32[0.1501253, 0.073269576]
Float32[0.5192045, 0.48079553]
param([0.71068, 0.831145, 0.751219, 0.227116, 0.553074])
param([0.0330606, -0.456104])
param([0.61991, 0.38009])
julia> sum(norm, ans)
2.1166067f0
```
```@docs
Flux.activations
2.639678767773633 (tracked)
```

View File

@ -4,7 +4,7 @@ All the usual [Julia performance tips apply](https://docs.julialang.org/en/v1/ma
As always [profiling your code](https://docs.julialang.org/en/v1/manual/profile/#Profiling-1) is generally a useful way of finding bottlenecks.
Below follow some Flux specific tips/reminders.
## Don't use more precision than you need
## Don't use more precision than you need.
Flux works great with all kinds of number types.
But often you do not need to be working with say `Float64` (let alone `BigFloat`).
@ -14,12 +14,11 @@ Which means allocations occur much faster.
And you use less memory.
## Preserve inputs' types
Not only should your activation and loss functions be [type-stable](https://docs.julialang.org/en/v1/manual/performance-tips/#Write-%22type-stable%22-functions-1),
## Make sure your custom activation functions preserve the type of their inputs
Not only should your activation functions be [type-stable](https://docs.julialang.org/en/v1/manual/performance-tips/#Write-%22type-stable%22-functions-1),
they should also preserve the type of their inputs.
A very artificial example using an activation function like
A very artificial example using an activatioon function like
```
my_tanh(x) = Float64(tanh(x))
@ -27,32 +26,33 @@ A very artificial example using an activation function like
will result in performance on `Float32` input orders of magnitude slower than the normal `tanh` would,
because it results in having to use slow mixed type multiplication in the dense layers.
Similar situations can occur in the loss function during backpropagation.
Which means if you change your data say from `Float64` to `Float32` (which should give a speedup: see above),
you will see a large slow-down.
you will see a large slow-down
This can occur sneakily, because you can cause type-promotion by interacting with a numeric literals.
E.g. the following will have run into the same problem as above:
```
leaky_tanh(x) = 0.01*x + tanh(x)
leaky_tanh(x) = 0.01x + tanh(x)
```
While one could change the activation function (e.g. to use `0.01f0*x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
While one could change your activation function (e.g. to use `0.01f0x`) to avoid this when ever your inputs change,
the idiomatic (and safe way) is to use `oftype`.
```
leaky_tanh(x) = oftype(x/1, 0.01)*x + tanh(x)
leaky_tanh(x) = oftype(x/1, 0.01) + tanh(x)
```
## Evaluate batches as Matrices of features
## Evaluate batches as Matrices of features, rather than sequences of Vector features
While it can sometimes be tempting to process your observations (feature vectors) one at a time
e.g.
```julia
function loss_total(xs::AbstractVector{<:Vector}, ys::AbstractVector{<:Vector})
sum(zip(xs, ys)) do (x, y_target)
y_pred = model(x) # evaluate the model
y_pred = model(x) # evaluate the model
return loss(y_pred, y_target)
end
end
@ -60,7 +60,7 @@ end
It is much faster to concatenate them into a matrix,
as this will hit BLAS matrix-matrix multiplication, which is much faster than the equivalent sequence of matrix-vector multiplications.
The improvement is enough that it is worthwhile allocating new memory to store them contiguously.
Even though this means allocating new memory to store them contiguously.
```julia
x_batch = reduce(hcat, xs)
@ -73,4 +73,4 @@ end
```
When doing this kind of concatenation use `reduce(hcat, xs)` rather than `hcat(xs...)`.
This will avoid the splatting penalty, and will hit the optimised `reduce` method.
This will avoid the splatting penality, and will hit the optimised `reduce` method.

View File

@ -53,7 +53,7 @@ julia> using Flux
julia> model = Chain(Dense(10,5,relu),Dense(5,2),softmax)
Chain(Dense(10, 5, NNlib.relu), Dense(5, 2), NNlib.softmax)
julia> weights = params(model);
julia> weights = Tracker.data.(params(model));
julia> using BSON: @save
@ -113,6 +113,6 @@ You can even store optimiser state alongside the model, to resume training
exactly where you left off.
```julia
opt = ADAM()
opt = ADAM(params(model))
@save "model-$(now()).bson" model opt
```

View File

@ -3,25 +3,25 @@
Consider a [simple linear regression](../models/basics.md). We create some dummy data, calculate a loss, and backpropagate to calculate gradients for the parameters `W` and `b`.
```julia
using Flux
using Flux, Flux.Tracker
W = rand(2, 5)
b = rand(2)
W = param(rand(2, 5))
b = param(rand(2))
predict(x) = (W * x) .+ b
predict(x) = W*x .+ b
loss(x, y) = sum((predict(x) .- y).^2)
x, y = rand(5), rand(2) # Dummy data
l = loss(x, y) # ~ 3
θ = Params([W, b])
grads = gradient(() -> loss(x, y), θ)
grads = Tracker.gradient(() -> loss(x, y), θ)
```
We want to update each parameter, using the gradient, in order to improve (reduce) the loss. Here's one way to do that:
```julia
using Flux.Optimise: update!
using Flux.Tracker: grad, update!
η = 0.1 # Learning Rate
for p in (W, b)
@ -46,110 +46,8 @@ An optimiser `update!` accepts a parameter and a gradient, and updates the param
All optimisers return an object that, when passed to `train!`, will update the parameters passed to it.
```@docs
Flux.Optimise.update!
Descent
Momentum
Nesterov
RMSProp
ADAM
RADAM
AdaMax
ADAGrad
ADADelta
AMSGrad
NADAM
ADAMW
```
## Optimiser Interface
Flux's optimisers are built around a `struct` that holds all the optimiser parameters along with a definition of how to apply the update rule associated with it. We do this via the `apply!` function which takes the optimiser as the first argument followed by the parameter and its corresponding gradient.
In this manner Flux also allows one to create custom optimisers to be used seamlessly. Let's work this with a simple example.
```julia
mutable struct Momentum
eta
rho
velocity
end
Momentum(eta::Real, rho::Real) = Momentum(eta, rho, IdDict())
```
The `Momentum` type will act as our optimiser in this case. Notice that we have added all the parameters as fields, along with the velocity which we will use as our state dictionary. Each parameter in our models will get an entry in there. We can now define the rule applied when this optimiser is invoked.
```julia
function Flux.Optimise.apply!(o::Momentum, x, Δ)
η, ρ = o.eta, o.rho
v = get!(o.velocity, x, zero(x))::typeof(x)
@. v = ρ * v - η * Δ
@. Δ = -v
end
```
This is the basic definition of a Momentum update rule given by:
```math
v = ρ * v - η * Δ
w = w - v
```
The `apply!` defines the update rules for an optimiser `opt`, given the parameters and gradients. It returns the updated gradients. Here, every parameter `x` is retrieved from the running state `v` and subsequently updates the state of the optimiser.
Flux internally calls on this function via the `update!` function. It shares the API with `apply!` but ensures that multiple parameters are handled gracefully.
## Composing Optimisers
Flux defines a special kind of optimiser simply called `Optimiser` which takes in arbitrary optimisers as input. Its behaviour is similar to the usual optimisers, but differs in that it acts by calling the optimisers listed in it sequentially. Each optimiser produces a modified gradient
that will be fed into the next, and the resultant update will be applied to the parameter as usual. A classic use case is where adding decays is desirable. Flux defines some basic decays including `ExpDecay`, `InvDecay` etc.
```julia
opt = Optimiser(ExpDecay(0.001, 0.1, 1000, 1e-4), Descent())
```
Here we apply exponential decay to the `Descent` optimiser. The defaults of `ExpDecay` say that its learning rate will be decayed every 1000 steps.
It is then applied like any optimiser.
```julia
w = randn(10, 10)
w1 = randn(10,10)
ps = Params([w, w1])
loss(x) = Flux.mse(w * x, w1 * x)
loss(rand(10)) # around 9
for t = 1:10^5
θ = Params([w, w1])
θ̄ = gradient(() -> loss(rand(10)), θ)
Flux.Optimise.update!(opt, θ, θ̄)
end
loss(rand(10)) # around 0.9
```
In this manner it is possible to compose optimisers for some added flexibility.
## Decays
Similar to optimisers, Flux also defines some simple decays that can be used in conjunction with other optimisers, or standalone.
```@docs
ExpDecay
InvDecay
WeightDecay
```
## Gradient Clipping
Gradient clipping is useful for training recurrent neural networks, which have a tendency to suffer from the exploding gradient problem. An example usage is
```julia
opt = Optimiser(ClipValue(1e-3), ADAM(1e-3))
```
```@docs
ClipValue
ClipNorm
```

View File

@ -1,16 +1,15 @@
# Training
To actually train a model we need four things:
To actually train a model we need three things:
* A *objective function*, that evaluates how well a model is doing given some input data.
* The trainable parameters of the model.
* A collection of data points that will be provided to the objective function.
* An [optimiser](optimisers.md) that will update the model parameters appropriately.
With these we can call `train!`:
With these we can call `Flux.train!`:
```@docs
Flux.Optimise.train!
```julia
Flux.train!(objective, params, data, opt)
```
There are plenty of examples in the [model zoo](https://github.com/FluxML/model-zoo).
@ -32,17 +31,6 @@ Flux.train!(loss, ps, data, opt)
```
The objective will almost always be defined in terms of some *cost function* that measures the distance of the prediction `m(x)` from the target `y`. Flux has several of these built in, like `mse` for mean squared error or `crossentropy` for cross entropy loss, but you can calculate it however you want.
For a list of all built-in loss functions, check out the [layer reference](../models/layers.md).
At first glance it may seem strange that the model that we want to train is not part of the input arguments of `Flux.train!` too. However the target of the optimizer is not the model itself, but the objective function that represents the departure between modelled and observed data. In other words, the model is implicitly defined in the objective function, and there is no need to give it explicitly. Passing the objective function instead of the model and a cost function separately provides more flexibility, and the possibility of optimizing the calculations.
## Model parameters
The model to be trained must have a set of tracked parameters that are used to calculate the gradients of the objective function. In the [basics](../models/basics.md) section it is explained how to create models with such parameters. The second argument of the function `Flux.train!` must be an object containing those parameters, which can be obtained from a model `m` as `params(m)`.
Such an object contains a reference to the model's parameters, not a copy, such that after their training, the model behaves according to their updated values.
Handling all the parameters on a layer by layer basis is explained in the [Layer Helpers](../models/basics.md) section. Also, for freezing model parameters, see the [Advanced Usage Guide](../models/advanced.md).
## Datasets
@ -59,8 +47,7 @@ data = [(x, y)]
```julia
data = [(x, y), (x, y), (x, y)]
# Or equivalently
using IterTools: ncycle
data = ncycle([(x, y)], 3)
data = Iterators.repeated((x, y), 3)
```
It's common to load the `x`s and `y`s separately. In this case you can use `zip`:
@ -71,14 +58,6 @@ ys = [rand( 10), rand( 10), rand( 10)]
data = zip(xs, ys)
```
Training data can be conveniently partitioned for mini-batch training using the [`Flux.Data.DataLoader`](@ref) type:
```julia
X = rand(28, 28, 60000)
Y = rand(0:9, 60000)
data = DataLoader(X, Y, batchsize=128)
```
Note that, by default, `train!` only loops over the data once (a single "epoch").
A convenient way to run multiple epochs from the REPL is provided by `@epochs`.
@ -95,10 +74,6 @@ julia> @epochs 2 Flux.train!(...)
# Train for two epochs
```
```@docs
Flux.@epochs
```
## Callbacks
`train!` takes an additional argument, `cb`, that's used for callbacks so that you can observe the training process. For example:
@ -118,38 +93,3 @@ evalcb() = @show(loss(test_x, test_y))
Flux.train!(objective, ps, data, opt,
cb = throttle(evalcb, 5))
```
Calling `Flux.stop()` in a callback will exit the training loop early.
```julia
cb = function ()
accuracy() > 0.9 && Flux.stop()
end
```
## Custom Training loops
The `Flux.train!` function can be very convenient, especially for simple problems.
Its also very flexible with the use of callbacks.
But for some problems its much cleaner to write your own custom training loop.
An example follows that works similar to the default `Flux.train` but with no callbacks.
You don't need callbacks if you just code the calls to your functions directly into the loop.
E.g. in the places marked with comments.
```julia
function my_custom_train!(loss, ps, data, opt)
ps = Params(ps)
for d in data
gs = gradient(ps) do
training_loss = loss(d...)
# Insert whatever code you want here that needs Training loss, e.g. logging
return training_loss
end
# insert what ever code you want here that needs gradient
# E.g. logging with TensorBoardLogger.jl as histogram so you can see if it is becoming huge
update!(opt, ps, gs)
# Here you might like to check validation set accuracy, and break out to do early stopping
end
end
```
You could simplify this further, for example by hard-coding in the loss function.

View File

@ -1,49 +0,0 @@
# Utility Functions
Flux contains some utility functions for working with data; these functions
help create inputs for your models or batch your dataset.
Other functions can be used to initialize your layers or to regularly execute
callback functions.
## Working with Data
```@docs
Flux.unsqueeze
Flux.stack
Flux.unstack
Flux.chunk
Flux.frequencies
Flux.batch
Flux.batchseq
Base.rpad(v::AbstractVector, n::Integer, p)
```
## Layer Initialization
These are primarily useful if you are planning to write your own layers.
Flux initializes convolutional layers and recurrent cells with `glorot_uniform`
by default.
To change the default on an applicable layer, pass the desired function with the
`init` keyword. For example:
```jldoctest; setup = :(using Flux)
julia> conv = Conv((3, 3), 1 => 8, relu; init=Flux.glorot_normal)
Conv((3, 3), 1=>8, relu)
```
```@docs
Flux.glorot_uniform
Flux.glorot_normal
```
## Model Abstraction
```@docs
Flux.destructure
```
## Callback Helpers
```@docs
Flux.throttle
Flux.stop
```

View File

@ -14,7 +14,7 @@
journal = {arXiv},
volume = {abs/11712.03112},
year = {2017},
url = {https://arxiv.org/abs/1712.03112},
url = {http://arxiv.org/abs/1712.03112},
}
@online{MLPL,
@ -29,7 +29,7 @@
author = {Mike Innes and others},
title = {Generic GPU Kernels},
year = 2017,
url = {https://mikeinnes.github.io/2017/08/24/cudanative.html},
url = {http://mikeinnes.github.io/2017/08/24/cudanative.html},
urldate = {2018-02-16}
}

View File

@ -3,35 +3,25 @@ module Flux
# Zero Flux Given
using Base: tail
using Statistics, Random, LinearAlgebra
using Zygote, MacroTools, Juno, Reexport
using MacroTools, Juno, Requires, Reexport, Statistics, Random
using MacroTools: @forward
@reexport using NNlib
using Zygote: Params, @adjoint, gradient, pullback, @nograd
using Zygote: Params, @adjoint, gradient
export gradient
export Chain, Dense, Maxout, RNN, LSTM, GRU, SamePad, Conv, CrossCor, ConvTranspose,
GlobalMaxPool, GlobalMeanPool, MaxPool, MeanPool, flatten,
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm, GroupNorm,
SkipConnection, params, fmap, cpu, gpu, f32, f64, testmode!, trainmode!
export Chain, Dense, RNN, LSTM, GRU, Conv, ConvTranspose, MaxPool, MeanPool,
DepthwiseConv, Dropout, AlphaDropout, LayerNorm, BatchNorm, InstanceNorm,
params, mapleaves, cpu, gpu, f32, f64
include("optimise/Optimise.jl")
using .Optimise
using .Optimise: @epochs
export Descent, ADAM, Momentum, Nesterov, RMSProp,
export SGD, Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay,
ClipValue, ClipNorm
using CuArrays
const use_cuda = Ref(false)
ADAMW, InvDecay, ExpDecay, WeightDecay
include("utils.jl")
include("zeros.jl")
include("onehot.jl")
include("functor.jl")
include("treelike.jl")
include("layers/stateless.jl")
include("layers/basic.jl")
@ -41,17 +31,6 @@ include("layers/normalise.jl")
include("data/Data.jl")
include("deprecations.jl")
include("cuda/cuda.jl")
function __init__()
use_cuda[] = CuArrays.functional() # Can be overridden after load with `Flux.use_cuda[] = false`
if CuArrays.functional()
if !CuArrays.has_cudnn()
@warn "CuArrays.jl found cuda, but did not find libcudnn. Some functionality will not be available."
end
end
end
@init @require CuArrays="3a865a2d-5b23-5a0f-bc46-62713ec82fae" include("cuda/cuda.jl")
end # module

View File

@ -1,9 +1,37 @@
module CUDA
using ..CuArrays
using Pkg.TOML
using CuArrays: CUDNN
include("curnn.jl")
include("cudnn.jl")
function version_check()
minor_version = 9
project = joinpath(dirname(pathof(CuArrays)), "../Project.toml")
project = TOML.parse(String(read(project)))
version = VersionNumber(get(project, "version", "0.0.0"))
if !(version.major == 0 && version.minor == minor_version)
@warn """
Flux is only supported with CuArrays v0.$minor_version.
Try running `] pin CuArrays@0.$minor_version`.
"""
end
end
version_check()
if !applicable(CuArray{UInt8}, undef, 1)
(T::Type{<:CuArray})(::UndefInitializer, sz...) = T(sz...)
end
if CuArrays.libcudnn != nothing
if isdefined(CuArrays, :libcudnn_handle)
handle() = CuArrays.libcudnn_handle[]
else
handle() = CuArrays.CUDNN.handle()
end
include("curnn.jl")
include("cudnn.jl")
else
@warn("CUDNN is not installed, some functionality will not be available.")
end
end

View File

@ -1,8 +1,200 @@
using .CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, cudnnTensorDescriptor_t,
cudnnBatchNormMode_t, cudnnHandle_t, cudnnDataType, TensorDesc, FilterDesc
import ..Flux: data
import CuArrays.CUDNN: batchnorm, ∇batchnorm
using LinearAlgebra
(BN::Flux.BatchNorm)(x::Union{CuArray{T,2},CuArray{T,4},CuArray{T,5}}, cache = nothing) where T<:Union{Float32, Float64} =
BN.λ.(batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum; cache = cache, alpha = 1, beta = 0, eps = BN.ϵ, training = Flux.istraining()))
mutable struct DropoutDesc
ptr::Ptr{Nothing}
states::CuVector{UInt8}
end
Base.unsafe_convert(::Type{Ptr{Nothing}}, dd::DropoutDesc) = dd.ptr
function DropoutDesc(ρ::Real; seed::Integer=0)
d = [C_NULL]
s = Csize_t[0]
@check ccall((:cudnnCreateDropoutDescriptor,libcudnn), cudnnStatus_t, (Ptr{Ptr{Nothing}},), d)
@check ccall((:cudnnDropoutGetStatesSize,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Csize_t}),handle(),s)
states = CuArray{UInt8}(undef, s[]) # TODO: can we drop this when ρ=0?
desc = DropoutDesc(d[], states)
@check ccall((:cudnnSetDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},Ptr{Nothing},Cfloat,Ptr{Nothing},Csize_t,Culonglong),
desc,handle(),ρ,states,length(states),seed)
finalizer(desc) do x
@check ccall((:cudnnDestroyDropoutDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x)
end
return desc
end
const BATCHNORM_SPATIAL = 1
const BATCHNORM_ACTIVATION = 0
const BATCHNORM_MIN_EPS = 1e-5
@inline _wsize(y) = (map(_ -> 1, size(y)[1:end-2])..., size(y)[end-1], 1)
@inline _reddims(y) = (collect(1:ndims(y)-2)..., ndims(y))
mutable struct BNCache
mean
ivar
end
BNCache() = BNCache(nothing, nothing)
# NOTE: CuDNN supports only 4D and 5D Tensors for BatchNorm Operations
# so reshape a 2D Tensor into 4D
batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T, 2},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, alpha = T(1), beta = T(0),
eps = T(1e-5), training = true) where T<:Union{Float32, Float64} =
dropdims(batchnorm(g, b, reshape(x, 1, 1, size(x, 1), size(x, 2)), running_mean, running_var, momentum,
cache = cache, alpha = alpha, beta = beta, eps = eps, training = training), dims = (1, 2))
function batchnorm(g::CuArray{T}, b::CuArray{T}, x::Union{CuArray{T, 4},CuArray{T,5}},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, alpha = T(1), beta = T(0),
eps = T(1e-5), training = true) where T<:Union{Float32, Float64}
y = similar(x)
cudnnBNForward!(y, g, b, x, running_mean, running_var, momentum, cache = cache,
alpha = alpha, beta = beta, eps = eps, training = training)
y
end
function cudnnBNForward!(y::CuArray{T}, g::CuArray{T}, b::CuArray{T}, x::CuArray{T},
running_mean::CuArray{T}, running_var::CuArray{T},
momentum; cache = nothing,
alpha = T(1), beta = T(0),
eps = T(1e-5), training = true) where T<:Union{Float32, Float64}
dims = _wsize(x)
if eps < BATCHNORM_MIN_EPS
# warn("eps ",eps," is too small for CuDNN so eps has been assigned the value ", BATCHNORM_MIN_EPS)
eps = BATCHNORM_MIN_EPS
end
xd = TensorDesc(x)
yd = TensorDesc(y)
gd = TensorDesc(T, dims)
if training
if cache !== nothing
mean = zeros(CuArray{T}, dims...)
ivar = ones(CuArray{T}, dims...)
else
mean = C_NULL
ivar = C_NULL
end
@check ccall((:cudnnBatchNormalizationForwardTraining, libcudnn), cudnnStatus_t,
(cudnnHandle_t,cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T}),
handle(), BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
xd, x,
yd, y,
gd, g, b,
momentum, running_mean, running_var,
eps, mean, ivar)
if cache !== nothing
cache.mean = mean
cache.ivar = ivar
end
else
@check ccall((:cudnnBatchNormalizationForwardInference, libcudnn), cudnnStatus_t,
(Ptr{cudnnHandle_t},cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T},
Ptr{T}, Ptr{T},
Cdouble),
handle(), BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
xd, x,
yd, y,
gd, g, b,
running_mean, running_var,
eps)
end
end
function ∇batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T, 2}, dy::CuArray{T, 2},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, eps = T(1e-5), alpha = T(1),
beta = T(0), training = true) where T<:Union{Float32, Float64}
dg, db, dx = ∇batchnorm(g, b, reshape(x, 1, 1, size(x, 1), size(x, 2)), reshape(dy, 1, 1, size(dy, 1),
size(dy, 2)), running_mean, running_var, momentum, cache = cache, eps = eps,
alpha = alpha, beta = beta, training = training)
(dg, db, dropdims(dx, dims = (1, 2)))
end
function ∇batchnorm(g::CuArray{T}, b::CuArray{T}, x::CuArray{T}, dy::CuArray{T},
running_mean::CuArray{T}, running_var::CuArray{T}, momentum;
cache = nothing, eps = T(1e-5), alpha = T(1),
beta = T(0), training = true) where T<:Union{Float32, Float64}
dg = similar(g)
db = similar(b)
dx = similar(x)
cudnnBNBackward!(dg, g, db, dx, x, dy, running_mean, running_var, T(momentum),
training = training, cache = cache, eps = eps, alpha = alpha, beta = beta)
(dg, db, dx)
end
function cudnnBNBackward!(dg::CuArray{T}, g::CuArray{T}, db::CuArray{T},
dx::CuArray{T}, x::CuArray{T}, dy::CuArray{T},
running_mean::CuArray{T}, running_var::CuArray{T},
momentum; cache = nothing, eps = T(1e-5),
alpha = T(1), beta = T(0),
dalpha = T(1), dbeta = T(0), training = true) where T<:Union{Float32, Float64}
if training
xd = TensorDesc(x)
dyd = TensorDesc(dy)
dxd = TensorDesc(dx)
gd = TensorDesc(T, _wsize(x))
if cache !== nothing
mean, ivar = cache.mean, cache.ivar
info("mean and ivar are fetched from the cache")
else
mean, ivar = C_NULL, C_NULL
end
if eps < BATCHNORM_MIN_EPS
eps = BATCHNORM_MIN_EPS
end
@check ccall((:cudnnBatchNormalizationBackward, libcudnn), cudnnStatus_t,
(cudnnHandle_t,cudnnBatchNormMode_t,
Ptr{T}, Ptr{T},
Ptr{T}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{T}, Ptr{T},
Cdouble, Ptr{T}, Ptr{T}),
handle(), BATCHNORM_SPATIAL,
Ref(T(alpha)), Ref(T(beta)),
Ref(T(dalpha)), Ref(T(dbeta)),
xd, x,
dyd, dy,
dxd, dx,
gd, g, dg, db,
eps, mean, ivar)
else
ivar = 1 ./ sqrt.(reshape(running_var, _wsize(x)) .+ eps)
dx .= dy .* reshape(g, _wsize(x)) .* ivar
dg .= squeeze(sum(dy .* (x .- reshape(running_mean, _wsize(x))) .* ivar, _reddims(dy)), dims = (1,2,4))
db .= squeeze(sum(dy, _reddims(dy)), dims = (1,2,4))
end
end
# Flux Interface
(BN::Flux.BatchNorm)(x::Union{CuParam{T,2},CuParam{T,4},CuParam{T,5}}, cache = nothing) where T<:Union{Float32, Float64} =
batchnorm(BN.γ, BN.β, x, BN.μ, BN.σ², BN.momentum; cache = cache, alpha = 1, beta = 0, eps = BN.ϵ, training = BN.active)
@adjoint batchnorm(g, b, x, running_mean, running_var, momentum; kw...) =
batchnorm(g, b, x, running_mean, running_var, momentum; kw...), Δ -> (∇batchnorm(g, b, x, Δ, running_mean, running_var, momentum; kw...)..., nothing, nothing, nothing)
batchnorm(data.((g, b, x))..., running_mean, running_var, momentum; kw...), Δ -> (nobacksies(:batchnorm, ∇batchnorm(data.((g, b, x, Δ))..., running_mean, running_var, momentum; kw...))..., nothing, nothing, nothing)

View File

@ -1,90 +1,314 @@
using .CuArrays.CUDNN: @check, libcudnn, cudnnStatus_t, cudnnTensorDescriptor_t,
cudnnBatchNormMode_t, cudnnHandle_t, cudnnDataType, TensorDesc, FilterDesc
using LinearAlgebra
const RNN_RELU = 0 # Stock RNN with ReLu activation
const RNN_TANH = 1 # Stock RNN with tanh activation
const LSTM = 2 # LSTM with no peephole connections
const GRU = 3 # Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1)
const LINEAR_INPUT = 0
const SKIP_INPUT = 1
const UNIDIRECTIONAL = 0
const BIDIRECTIONAL = 1
const RNN_ALGO_STANDARD = 0
const RNN_ALGO_PERSIST_STATIC = 1
const RNN_ALGO_PERSIST_DYNAMIC = 2
# param layout:
# RNN: [weight, bias] × [input, hidden]
# GRU: [weight, bias] × [input, hidden] × [reset, update, newmem]
# LSTM: [weight, bias] × [input, hidden] × [input, forget, newmem, output]
function params(w::CuVector, input, hidden, n = 1)
slice(offset, shape) = reshape(view(w, offset.+(1:prod(shape))), shape)
wx = slice(0, (input, hidden*n))
wh = slice(length(wx), (hidden, hidden*n))
bias = view(w, length(wx)+length(wh) .+ (1:hidden*n))
(wx, wh), bias
end
mutable struct RNNDesc{T}
mode::Int
input::Int
hidden::Int
params::CuVector{T}
weights::NTuple{2,CuMatrix{T}}
bias::CuVector{T}
ptr::Ptr{Nothing}
end
Base.unsafe_convert(::Type{Ptr{Nothing}}, d::RNNDesc) = d.ptr
function rnnParamSize(T, r, input)
size = Csize_t[0]
@check ccall((:cudnnGetRNNParamsSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Ptr{Nothing},Ptr{Csize_t},Cint),
handle(), r, TensorDesc(T, (1,input,1)), size, cudnnDataType(T))
return Int(size[])÷sizeof(T)
end
ngates(mode) = [1, 1, 4, 3][mode+1]
ngates(r::RNNDesc) = ngates(r.mode)
function RNNDesc{T}(mode::Int, input::Int, hidden::Int; layers = 1) where T
d = [C_NULL]
@check ccall((:cudnnCreateRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Ptr{Nothing}},),d)
dropoutDesc = DropoutDesc(0)
inputMode = LINEAR_INPUT
direction = UNIDIRECTIONAL
algo = RNN_ALGO_STANDARD
@check ccall((:cudnnSetRNNDescriptor_v6,libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Cint,Ptr{Nothing},Cint,Cint,Cint,Cint,Cint),
handle(),d[],hidden,layers,dropoutDesc,inputMode,direction,mode,algo,cudnnDataType(T))
w = cuzeros(T, rnnParamSize(T, d[], input))
# TODO: avoid reserve allocation here
rd = RNNDesc{T}(mode, input, hidden, w, params(w, input, hidden, ngates(mode))..., d[])
finalizer(rd) do x
@check ccall((:cudnnDestroyRNNDescriptor,libcudnn),cudnnStatus_t,(Ptr{Nothing},),x)
end
return rd
end
function rnnWorkspaceSize(r::RNNDesc, seqlen, xdesc)
size = Csize_t[0]
@check ccall((:cudnnGetRNNWorkspaceSize, libcudnn), cudnnStatus_t, (Ptr{Nothing},Ptr{Nothing},Cint,Ptr{Ptr{Nothing}},Ptr{Csize_t}),
handle(), r, seqlen, xdesc, size)
return Int(size[])
end
const workspace = [CuVector{UInt8}(undef, 1)]
getworkspace(bytes) =
length(workspace[]) bytes ?
workspace[] :
(workspace[] = CuVector{UInt8}(undef, bytes))
getworkspace(r::RNNDesc, seqlen, xdesc) =
getworkspace(rnnWorkspaceSize(r, seqlen, xdesc))
function rnnTrainingReserveSize(r::RNNDesc, seqlen, xdesc)
size = Csize_t[0]
@check ccall((:cudnnGetRNNTrainingReserveSize,libcudnn), cudnnStatus_t, (Ptr{Nothing}, Ptr{Nothing}, Cint, Ptr{Ptr{Nothing}}, Ptr{Csize_t}),
handle(), r, seqlen, xdesc, size)
return Int(size[])
end
function cudnnRNNForward(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
workspace, reserve=nothing) where T
if reserve == nothing
@check ccall((:cudnnRNNForwardInference, libcudnn), cudnnStatus_t,
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t),
handle(), rnn, seqlen,
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
workspace, length(workspace))
else
@check ccall((:cudnnRNNForwardTraining, libcudnn), cudnnStatus_t,
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
handle(), rnn, seqlen,
xd, x, hd, h, cd, c, wd, w, yd, y, hod, ho, cod, co,
workspace, length(workspace), reserve, length(reserve))
end
end
xDesc(x) = [TensorDesc(eltype(x), (1, size(x, 1), size(x, 2)))]
hDesc(h::Nothing) = C_NULL, C_NULL
hDesc(x::Integer) = (@assert x == 0; hDesc(nothing))
function hDesc(h::CuArray)
TensorDesc(eltype(h), (size(h, 1), size(h, 2), 1)), h
end
# TODO: can we just manipulate strides here?
# TODO: should use repmat, but this isn't implemented.
hBatch(x::AbstractVector, h::CuVector) = h
hBatch(x::AbstractMatrix, h::CuVector) = h .* cuones(1, size(x, 2))
hBatch(x::AbstractMatrix, h::CuMatrix) = h .* cuones(1, size(h,2) == 1 ? size(x,2) : 1)
function forward(rnn::RNNDesc{T}, x::CuArray{T}, h_::CuArray{T}, c_ = nothing, train = Val{false}) where T
h = hBatch(x, h_)
c = c_ == nothing ? nothing : hBatch(x, c_)
@assert size(x, 1) == rnn.input
@assert size(h, 1) == rnn.hidden
@assert size(x, 2) == size(h, 2)
seqLength = 1
xdesc = xDesc(x)
y = x isa AbstractVector ? similar(x, rnn.hidden) : similar(x, rnn.hidden, size(x, 2))
ho = similar(h)
ydesc = xDesc(y)
workspace = getworkspace(rnn, seqLength, xdesc)
reserve = train == Val{true} ?
CuVector{UInt8}(undef, rnnTrainingReserveSize(rnn, seqLength, xdesc)) :
nothing
co = c == nothing ? c : similar(c)
cudnnRNNForward(rnn, seqLength,
xdesc, x,
hDesc(h)...,
hDesc(c)...,
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params,
ydesc, y,
hDesc(ho)...,
hDesc(co)...,
workspace, reserve)
result = c == nothing ? (y, ho) : (y, ho, co)
return train == Val{true} ? (reserve, result) : result
end
forwardTrain(rnn::RNNDesc{T}, x::CuArray{T}, h::CuArray{T}, c = nothing) where T =
forward(rnn, x, h, c, Val{true})
function cudnnRNNBackwardData(rnn::RNNDesc{T}, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, rs) where T
@check ccall((:cudnnRNNBackwardData,libcudnn),cudnnStatus_t,
(Ptr{Nothing}, Ptr{Nothing}, Cint,
Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing},
Ptr{T}, Ptr{Ptr{Nothing}}, Ptr{T}, Ptr{Nothing}, Ptr{T}, Ptr{Nothing}, Ptr{T},
Ptr{Nothing}, Csize_t, Ptr{Nothing}, Csize_t),
handle(), rnn, seqlen, yd, y, dyd, dy, dhod, dho, dcod, dco,
wd, w, hd, h, cd, c, dxd, dx, dhd, dh, dcd, dc, ws, length(ws), rs, length(rs))
end
function backwardData(rnn::RNNDesc{T}, y, dy_, dho, dco, h, c, reserve) where T
# Same as above, any more efficient way?
dy = dy_ isa Integer ? zero(y) : dy_
yd = xDesc(y)
dx = y isa AbstractVector ? similar(dy, rnn.input) : similar(dy, rnn.input, size(dy, 2))
dh = similar(h)
dc = c == nothing ? nothing : similar(c)
cudnnRNNBackwardData(rnn, 1,
yd, y, yd, dy, hDesc(dho)..., hDesc(dco)...,
FilterDesc(T, (1, 1, length(rnn.params))), rnn.params,
hDesc(h)..., hDesc(c)..., xDesc(dx), dx, hDesc(dh)..., hDesc(dc)...,
workspace[], reserve)
return c == nothing ? (dx, dh) : (dx, dh, dc)
end
backwardData(rnn, y, dy, dho, hx, reserve) =
backwardData(rnn, y, dy, dho, nothing, hx, nothing, reserve)
function cudnnRNNBackwardWeights(rnn::RNNDesc{T}, seqlen, xd, x, hd, h, yd, y, dwd, dw,
workspace, reserve) where T
@check ccall((:cudnnRNNBackwardWeights,libcudnn), cudnnStatus_t,
(Ptr{Nothing}, Ptr{Nothing}, Cint, # handle, rnnDesc, seqLength
Ptr{Ptr{Nothing}}, Ptr{T}, #x
Ptr{Nothing}, Ptr{T}, #hx
Ptr{Ptr{Nothing}}, Ptr{T}, #y
Ptr{Nothing}, Csize_t, #ws
Ptr{Nothing}, Ptr{T}, #dw
Ptr{Nothing}, Csize_t), #rs
handle(), rnn, seqlen, xd, x, hd, h, yd, y,
workspace, length(workspace), dwd, dw, reserve, length(reserve))
end
function backwardWeights(rnn::RNNDesc{T}, x, h, y, reserve) where T
dw = zero(rnn.params)
cudnnRNNBackwardWeights(rnn, 1,
xDesc(x), x, hDesc(h)..., xDesc(y), y,
FilterDesc(T, (1, 1, length(dw))), dw,
workspace[], reserve)
return params(dw, rnn.input, rnn.hidden, ngates(rnn))
end
# Interface
import ..Flux: Flux, relu
using CuArrays.CUDAnative
using .CuArrays.CUDAnative
using .CuArrays: @cuindex, cudims
function LinearAlgebra.copy_transpose!(dst::CuArray, src::CuArray)
function kernel(dst, src)
I = @cuindex dst
dst[I...] = src[reverse(I)...]
return
end
blk, thr = cudims(dst)
@cuda blocks=blk threads=thr kernel(dst, src)
return dst
end
CuRNN{T} = Flux.RNNCell{<:Union{typeof(tanh),typeof(relu)},<:CuArray{T,2},<:CuArray{T,1}}
CuGRU{T} = Flux.GRUCell{<:CuArray{T,2},<:CuArray{T,1}}
CuLSTM{T} = Flux.LSTMCell{<:CuArray{T,2},<:CuArray{T,1}}
CuRNNs{T} = Union{CuRNN{T},CuGRU{T},CuLSTM{T}}
function CUDNN.RNNDesc(m::CuRNNs{T}) where T
function copyparams!(m::CuRNNs, d::RNNDesc)
Wi, Wh = d.weights
copy_transpose!(Wi, Flux.data(m.Wi))
copy_transpose!(Wh, Flux.data(m.Wh))
copy_transpose!(d.bias, Flux.data(m.b))
return
end
function RNNDesc(m::CuRNNs{T}) where T
h, i = length(m.h), size(m.Wi, 2)
mode = m isa CuRNN ?
(m.σ == tanh ? CUDNN.CUDNN_RNN_TANH : CUDNN.CUDNN_RNN_RELU) :
m isa CuGRU ? CUDNN.CUDNN_GRU : CUDNN.CUDNN_LSTM
r = CUDNN.RNNDesc{T}(mode, i, h)
(m.σ == tanh ? RNN_TANH : RNN_RELU) :
m isa CuGRU ? GRU : LSTM
r = RNNDesc{T}(mode, i, h)
return r
end
const descs = WeakKeyDict()
function desc(rnn)
d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = CUDNN.RNNDesc(rnn))
CUDNN.setweights!(d, rnn.Wi, rnn.Wh, rnn.b)
d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = RNNDesc(rnn))
copyparams!(rnn, d)
return d
end
import Zygote
using Zygote: @adjoint
function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h = CUDNN.forward(desc(m), x, h)
return h, y
result = forward(desc(m), x, h)
return result[2], result[1]
end
function (m::CuGRU{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h = CUDNN.forward(desc(m), x, h)
return h, y
result = forward(desc(m), x, h)
return result[2], result[1]
end
function (m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h, c = CUDNN.forward(desc(m), x, h[1], h[2])
return (h, c), y
result = forward(desc(m), x, h[1], h[2])
return (result[2], result[3]), result[1]
end
(m::CuRNN{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
(m::CuGRU{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
(m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x))))
unbroadcast(x::AbstractArray, Δ) =
size(x) == size(Δ) ? Δ :
length(x) == length(Δ) ? trim(x, Δ) :
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
coerce_cuda(x::Union{CuArray,Nothing}) = x
coerce_cuda(x::Tuple) = coerce_cuda.(x)
coerce_cuda(x::AbstractArray) = x .+ CuArrays.fill(0)
function struct_grad!(cx::Zygote.Context, x, )
for f in fieldnames(typeof(x))
Zygote.accum_param(cx, getfield(x, f), getfield(, f))
end
dx = Zygote.grad_mut(cx, x)
dx[] = Zygote.accum(dx[], )
return dx
end
for RNN in (CuRNN, CuGRU)
@eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
(y, ho), back = CUDNN.pullback(desc(m), x, h)
(ho, y), function (Δ)
dho, dy = coerce_cuda(Δ) # Support FillArrays etc.
= back(dy, dho)
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(.Wi),Wh=transpose(.Wh),b=.b,h=nothing))
(dm, unbroadcast(h, .h), .x)
end
@adjoint function (m::Union{CuRNN,CuGRU})(x, h, Wi, Wh, b)
reserve, result = forwardTrain(desc(m), x, h)
result, function (Δ)
y, ho = result
dy, dho = Δ
h_ = hBatch(x, h)
dx, dh = backwardData(descs[m], y, dy, dho, h_, reserve)
(dWi, dWh), db = backwardWeights(descs[m], x, h_, y, reserve)
nobacksies(:RNN, (dx, unbroadcast(h, dh), transpose(dWi), transpose(dWh), db))
end
end
@adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
(y, ho, co), back = CUDNN.pullback(desc(m), x, h, c)
((ho, co), y), function (Δ)
dhc, dy = coerce_cuda(Δ) # Support FillArrays etc.
dho, dco = dhc === nothing ? (nothing, nothing) : dhc
= back(dy, dho, dco)
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(.Wi),Wh=transpose(.Wh),b=.b,h=nothing,c=nothing))
(dm, (unbroadcast(h, .h), unbroadcast(c, .c)), .x)
@adjoint function (m::CuLSTM)(x, h, c, Wi, Wh, b)
reserve, result = forwardTrain(desc(m), data.((x, h, c))...)
result, function (Δ)
y, ho = result
dy, dho, dco = Δ
h_ = hBatch(x, h)
c_ = hBatch(x, c)
dx, dh, dc = backwardData(descs[m], y, dy, dho, dco, h_, c_, reserve)
(dWi, dWh), db = backwardWeights(descs[m], x, h_, y, reserve)
nobacksies(:RNN,
(dx, unbroadcast(h, dh), unbroadcast(c, dc),
transpose(dWi), transpose(dWh), db))
end
end

View File

@ -3,9 +3,6 @@ module Data
import ..Flux
import SHA
using Random: shuffle!
using Base: @propagate_inbounds
export CMUDict, cmudict
deps(path...) = joinpath(@__DIR__, "..", "..", "deps", path...)
@ -29,9 +26,6 @@ function __init__()
mkpath(deps())
end
include("dataloader.jl")
export DataLoader
include("mnist.jl")
export MNIST
@ -45,12 +39,4 @@ include("tree.jl")
include("sentiment.jl")
using .Sentiment
include("iris.jl")
export Iris
include("housing.jl")
export Housing
@deprecate DataLoader(x...; kws...) DataLoader(x; kws...)
end

View File

@ -19,40 +19,23 @@ function load()
@info "Downloading CMUDict dataset"
mkpath(deps("cmudict"))
for (x, hash) in suffixes_and_hashes
download_and_verify("$cache_prefix/https://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
download_and_verify("$cache_prefix/http://svn.code.sf.net/p/cmusphinx/code/trunk/cmudict/cmudict-$version$x",
deps("cmudict", "cmudict$x"), hash)
end
end
"""
phones()
Return a `Vector` containing the phones used in the CMU Pronouncing Dictionary.
"""
function phones()
load()
Symbol.(first.(split.(split(read(deps("cmudict", "cmudict.phones"),String),
"\n", keepempty = false), "\t")))
end
"""
symbols()
Return a `Vector` containing the symbols used in the CMU Pronouncing Dictionary.
A symbol is a phone with optional auxiliary symbols, indicating for example the
amount of stress on the phone.
"""
function symbols()
load()
Symbol.(split(read(deps("cmudict", "cmudict.symbols"),String),
"\n", keepempty = false))
end
"""
rawdict()
Return the unfiltered CMU Pronouncing Dictionary.
"""
function rawdict()
load()
Dict(String(xs[1]) => Symbol.(xs[2:end]) for xs in
@ -61,14 +44,6 @@ end
validword(s) = isascii(s) && occursin(r"^[\w\-\.]+$", s)
"""
cmudict()
Return a filtered CMU Pronouncing Dictionary.
It is filtered so each word contains only ASCII characters and a combination of
word characters (as determined by the regex engine using `\\w`), '-' and '.'.
"""
cmudict() = filter(p -> validword(p.first), rawdict())
alphabet() = ['A':'Z'..., '0':'9'..., '_', '-', '.']

View File

@ -1,110 +0,0 @@
# Adapted from Knet's src/data.jl (author: Deniz Yuret)
struct DataLoader{D}
data::D
batchsize::Int
nobs::Int
partial::Bool
imax::Int
indices::Vector{Int}
shuffle::Bool
end
"""
DataLoader(data; batchsize=1, shuffle=false, partial=true)
An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations
(except possibly the last one).
Takes as input a single data tensor, or a tuple (or a named tuple) of tensors.
The last dimension in each tensor is considered to be the observation dimension.
If `shuffle=true`, shuffles the observations each time iterations are re-started.
If `partial=false`, drops the last mini-batch if it is smaller than the batchsize.
The original data is preserved in the `data` field of the DataLoader.
Usage example:
Xtrain = rand(10, 100)
train_loader = DataLoader(Xtrain, batchsize=2)
# iterate over 50 mini-batches of size 2
for x in train_loader
@assert size(x) == (10, 2)
...
end
train_loader.data # original dataset
# similar, but yielding tuples
train_loader = DataLoader((Xtrain,), batchsize=2)
for (x,) in train_loader
@assert size(x) == (10, 2)
...
end
Xtrain = rand(10, 100)
Ytrain = rand(100)
train_loader = DataLoader((Xtrain, Ytrain), batchsize=2, shuffle=true)
for epoch in 1:100
for (x, y) in train_loader
@assert size(x) == (10, 2)
@assert size(y) == (2,)
...
end
end
# train for 10 epochs
using IterTools: ncycle
Flux.train!(loss, ps, ncycle(train_loader, 10), opt)
# can use NamedTuple to name tensors
train_loader = DataLoader((images=Xtrain, labels=Ytrain), batchsize=2, shuffle=true)
for datum in train_loader
@assert size(datum.images) == (10, 2)
@assert size(datum.labels) == (2,)
end
"""
function DataLoader(data; batchsize=1, shuffle=false, partial=true)
batchsize > 0 || throw(ArgumentError("Need positive batchsize"))
n = _nobs(data)
if n < batchsize
@warn "Number of observations less than batchsize, decreasing the batchsize to $n"
batchsize = n
end
imax = partial ? n : n - batchsize + 1
DataLoader(data, batchsize, n, partial, imax, [1:n;], shuffle)
end
@propagate_inbounds function Base.iterate(d::DataLoader, i=0) # returns data in d.indices[i+1:i+batchsize]
i >= d.imax && return nothing
if d.shuffle && i == 0
shuffle!(d.indices)
end
nexti = min(i + d.batchsize, d.nobs)
ids = d.indices[i+1:nexti]
batch = _getobs(d.data, ids)
return (batch, nexti)
end
function Base.length(d::DataLoader)
n = d.nobs / d.batchsize
d.partial ? ceil(Int,n) : floor(Int,n)
end
_nobs(data::AbstractArray) = size(data)[end]
function _nobs(data::Union{Tuple, NamedTuple})
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
n = _nobs(data[1])
if !all(x -> _nobs(x) == n, Base.tail(data))
throw(DimensionMismatch("All data should contain same number of observations"))
end
return n
end
_getobs(data::AbstractArray, i) = data[ntuple(i -> Colon(), Val(ndims(data) - 1))..., i]
_getobs(data::Union{Tuple, NamedTuple}, i) = map(Base.Fix2(_getobs, i), data)
Base.eltype(::DataLoader{D}) where D = D

View File

@ -33,10 +33,9 @@ const TESTLABELS = joinpath(dir, "t10k-labels-idx1-ubyte")
Load the Fashion-MNIST images.
Each image is a 28×28 array of `Gray` colour values
(see [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)).
Each image is a 28×28 array of `Gray` colour values (see Colors.jl).
Return the 60,000 training images by default; pass `:test` to retrieve the
Returns the 60,000 training images by default; pass `:test` to retreive the
10,000 test images.
"""
function images(set = :train)
@ -50,10 +49,10 @@ end
labels()
labels(:test)
Load the labels corresponding to each of the images returned from [`images()`](@ref).
Load the labels corresponding to each of the images returned from `images()`.
Each label is a number from 0-9.
Return the 60,000 training labels by default; pass `:test` to retrieve the
Returns the 60,000 training labels by default; pass `:test` to retreive the
10,000 test labels.
"""
function labels(set = :train)

View File

@ -1,136 +0,0 @@
"""
1. Title: Boston Housing Data
2. Sources:
(a) Origin: This dataset was taken from the StatLib library which is
maintained at Carnegie Mellon University.
(b) Creator: Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the
demand for clean air', J. Environ. Economics & Management,
vol.5, 81-102, 1978.
(c) Date: July 7, 1993
3. Number of Instances: 506
4. Number of Attributes: 13 continuous attributes (including "class"
attribute "MEDV"), 1 binary-valued attribute.
5. Attribute Information:
1. CRIM per capita crime rate by town
2. ZN proportion of residential land zoned for lots over
25,000 sq.ft.
3. INDUS proportion of non-retail business acres per town
4. CHAS Charles River dummy variable (= 1 if tract bounds
river; 0 otherwise)
5. NOX nitric oxides concentration (parts per 10 million)
6. RM average number of rooms per dwelling
7. AGE proportion of owner-occupied units built prior to 1940
8. DIS weighted distances to five Boston employment centres
9. RAD index of accessibility to radial highways
10. TAX full-value property-tax rate per 10,000 dollars
11. PTRATIO pupil-teacher ratio by town
12. B 1000(Bk - 0.63)^2 where Bk is the proportion of blacks
by town
13. LSTAT % lower status of the population
14. MEDV Median value of owner-occupied homes in 1000's of dollars
Downloaded From: https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data
"""
module Housing
using DelimitedFiles
using ..Data: deps, download_and_verify
#Uncomment if package exists
#const cache_prefix = "https://cache.julialang.org/"
const cache_prefix = ""
function load()
isfile(deps("housing.data")) && return
@info "Downloading the Boston housing Dataset"
download_and_verify("$(cache_prefix)http://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data",
deps("housing.data"),
"baadf72995725d76efe787b664e1f083388c79ba21ef9a7990d87f774184735a")
#@info "Download complete. Working on the files"
path = deps()
isfile(deps("housing.data")) && touch(joinpath(path, "tempfile.data"))
open(joinpath(path, "tempfile.data"), "a") do fout
open(deps("housing.data"), "r") do fin
for line in eachline(fin)
line = replace(lstrip(line), r" +" => s",")
println(fout, line)
end
end
end
mv(joinpath(path, "tempfile.data"), deps("housing.data"), force=true)
end
"""
Gets the targets for the Boston housing dataset, a 506 element array listing the targets for each example
```jldoctest
julia> using Flux
julia> target = Flux.Data.Housing.targets()
julia> summary(target)
506×1 Array{Float64,2}
julia> target[1]
24.0
"""
function targets()
load()
housing = readdlm(deps("housing.data"), ',')
reshape(Vector{Float64}(housing[1:end,end]), (506, 1))
end
"""
Gets the names of the features provided in the dataset
"""
function feature_names()
["crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","b","lstat"]
end
"""
Gets the features of the Boston Housing Dataset. This is a 506x13 Matrix of Float64 datatypes.
The values are in the order ["crim","zn","indus","chas","nox","rm","age","dis","rad","tax","ptratio","b","lstat"].
It has 506 examples.
```jldoctest
julia> using Flux
julia> features = Flux.Data.Housing.features()
julia> summary(features)
506×13 Array{Float64,2}
julia> features[1, :]
13-element Array{Float64,1}:
0.00632
18.0
2.31
0.0
0.538
296.0
15.3
396.9
4.98
"""
function features()
load()
housing = readdlm(deps("housing.data"), ',')
Matrix{Float64}(housing[1:end, 1:13])
end
end

View File

@ -1,78 +0,0 @@
"""
Fisher's classic iris dataset.
Measurements from 3 different species of iris: setosa, versicolor and
virginica. There are 50 examples of each species.
There are 4 measurements for each example: sepal length, sepal width,
petal length and petal width. The measurements are in centimeters.
The module retrieves the data from the [UCI Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/iris).
"""
module Iris
using DelimitedFiles
using ..Data: deps, download_and_verify
# Uncomment if the iris.data file is cached to cache.julialang.org.
const cache_prefix = "https://cache.julialang.org/"
function load()
isfile(deps("iris.data")) && return
@info "Downloading iris dataset."
download_and_verify("$(cache_prefix)https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data",
deps("iris.data"),
"6f608b71a7317216319b4d27b4d9bc84e6abd734eda7872b71a458569e2656c0")
end
"""
labels()
Get the labels of the iris dataset, a 150 element array of strings listing the
species of each example.
```jldoctest; setup = :(Flux.Data.Iris.load())
julia> labels = Flux.Data.Iris.labels();
julia> summary(labels)
"150-element Array{String,1}"
julia> labels[1]
"Iris-setosa"
```
"""
function labels()
load()
iris = readdlm(deps("iris.data"), ',')
Vector{String}(iris[1:end, end])
end
"""
features()
Get the features of the iris dataset. This is a 4x150 matrix of Float64
elements. It has a row for each feature (sepal length, sepal width,
petal length, petal width) and a column for each example.
```jldoctest; setup = :(Flux.Data.Iris.load())
julia> features = Flux.Data.Iris.features();
julia> summary(features)
"4×150 Array{Float64,2}"
julia> features[:, 1]
4-element Array{Float64,1}:
5.1
3.5
1.4
0.2
```
"""
function features()
load()
iris = readdlm(deps("iris.data"), ',')
Matrix{Float64}(iris[1:end, 1:4]')
end
end

View File

@ -83,10 +83,9 @@ getfeatures(io::IO, index::Integer) = vec(getimage(io, index))
Load the MNIST images.
Each image is a 28×28 array of `Gray` colour values
(see [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)).
Each image is a 28×28 array of `Gray` colour values (see Colors.jl).
Return the 60,000 training images by default; pass `:test` to retrieve the
Returns the 60,000 training images by default; pass `:test` to retreive the
10,000 test images.
"""
function images(set = :train)
@ -100,10 +99,10 @@ end
labels()
labels(:test)
Load the labels corresponding to each of the images returned from [`images()`](@ref).
Load the labels corresponding to each of the images returned from `images()`.
Each label is a number from 0-9.
Return the 60,000 training labels by default; pass `:test` to retrieve the
Returns the 60,000 training labels by default; pass `:test` to retreive the
10,000 test labels.
"""
function labels(set = :train)

View File

@ -1,4 +1,3 @@
"Stanford Sentiment Treebank dataset."
module Sentiment
using ZipFile
@ -40,28 +39,8 @@ function gettrees(name)
return parsetree.(ss)
end
"""
train()
Return the train split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
train() = gettrees("train")
"""
test()
Return the test split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
test() = gettrees("test")
"""
dev()
Return the dev split of the Stanford Sentiment Treebank.
The data is in [treebank](https://en.wikipedia.org/wiki/Treebank) format.
"""
dev() = gettrees("dev")
end

View File

@ -1,2 +0,0 @@
@deprecate param(x) x
@deprecate data(x) x

View File

@ -1,82 +0,0 @@
import Adapt: adapt, adapt_storage
using Zygote: IdSet
import Functors: @functor, functor, fmap
trainable(m) = functor(m)[1]
"""
testmode!(m, mode = true)
Set a layer or model's test mode (see below).
Using `:auto` mode will treat any gradient computation as training.
_Note_: if you manually set a model into test mode, you need to manually place
it back into train mode during training phase.
Possible values include:
- `false` for training
- `true` for testing
- `:auto` or `nothing` for Flux to detect the mode automatically
"""
testmode!(m, mode = true) = m
"""
trainmode!(m, mode = true)
Set a layer of model's train mode (see below).
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)`).
_Note_: if you manually set a model into train mode, you need to manually place
it into test mode during testing phase.
Possible values include:
- `true` for training
- `false` for testing
- `:auto` or `nothing` for Flux to detect the mode automatically
"""
trainmode!(m, mode = true) = mode isa Bool ? testmode!(m, !mode) : testmode!(m, mode)
params!(p::Params, x::AbstractArray{<:Number}, seen = IdSet()) = push!(p, x)
function params!(p::Params, x, seen = IdSet())
x in seen && return
push!(seen, x)
for child in trainable(x)
params!(p, child, seen)
end
end
function params(m...)
ps = Params()
params!(ps, m)
return ps
end
# Deprecated stuff
macro treelike(args...)
functorm(args...)
end
mapleaves(f, x) = fmap(f, x)
function loadparams!(m, xs)
for (p, x) in zip(params(m), xs)
size(p) == size(x) ||
error("Expected param size $(size(p)), got $(size(x))")
copyto!(p, x)
end
end
# CPU/GPU movement conveniences
cpu(m) = fmap(x -> adapt(Array, x), m)
gpu(x) = use_cuda[] ? fmap(CuArrays.cu, x) : x
# Precision
adapt_storage(T::Type{<:Real}, xs::AbstractArray{<:Real}) = convert.(T, xs)
paramtype(T::Type{<:Real}, m) = fmap(x -> adapt(T, x), m)
f32(m) = paramtype(Float32, m)
f64(m) = paramtype(Float64, m)

View File

@ -4,23 +4,17 @@
Chain multiple layers / functions together, so that they are called in sequence
on a given input.
```julia
m = Chain(x -> x^2, x -> x+1)
m(5) == 26
m = Chain(Dense(10, 5), Dense(5, 2))
x = rand(10)
m(x) == m[2](m[1](x))
```
`Chain` also supports indexing and slicing, e.g. `m[2]` or `m[1:end-1]`.
`m[1:3](x)` will calculate the output of the first three layers.
# Examples
```jldoctest
julia> m = Chain(x -> x^2, x -> x+1);
julia> m(5) == 26
true
julia> m = Chain(Dense(10, 5), Dense(5, 2));
julia> x = rand(10);
julia> m(x) == m[2](m[1](x))
true
```
"""
struct Chain{T<:Tuple}
layers::T
@ -30,7 +24,8 @@ end
@forward Chain.layers Base.getindex, Base.length, Base.first, Base.last,
Base.iterate, Base.lastindex
functor(::Type{<:Chain}, c) = c.layers, ls -> Chain(ls...)
children(c::Chain) = c.layers
mapchildren(f, c::Chain) = Chain(f.(c.layers)...)
applychain(::Tuple{}, x) = x
applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))
@ -39,70 +34,35 @@ applychain(fs::Tuple, x) = applychain(tail(fs), first(fs)(x))
Base.getindex(c::Chain, i::AbstractArray) = Chain(c.layers[i]...)
testmode!(m::Chain, mode = true) = (map(x -> testmode!(x, mode), m.layers); m)
function Base.show(io::IO, c::Chain)
print(io, "Chain(")
join(io, c.layers, ", ")
print(io, ")")
end
"""
outdims(c::Chain, isize)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = Chain(Conv((3, 3), 3 => 16), Conv((3, 3), 16 => 32))
outdims(m, (10, 10)) == (6, 6)
```
"""
outdims(c::Chain, isize) = foldl(, map(l -> (x -> outdims(l, x)), c.layers))(isize)
# This is a temporary and naive implementation
# it might be replaced in the future for better performance
# see issue https://github.com/FluxML/Flux.jl/issues/702
# Johnny Chen -- @johnnychen94
# only slightly changed to better handle interaction with Zygote @dsweber2
"""
activations(c::Chain, input)
Calculate the forward results of each layers in Chain `c` with `input` as model input.
"""
function activations(c::Chain, input)
extraChain(c.layers, input)
end
function extraChain(fs::Tuple, x)
res = first(fs)(x)
return (res, extraChain(Base.tail(fs), res)...)
end
extraChain(::Tuple{}, x) = ()
activations(c::Chain, x) = accumulate((x, m) -> m(x), c.layers, init = x)
"""
Dense(in::Integer, out::Integer, σ = identity)
Create a traditional `Dense` layer with parameters `W` and `b`.
Creates a traditional `Dense` layer with parameters `W` and `b`.
y = σ.(W * x .+ b)
The input `x` must be a vector of length `in`, or a batch of vectors represented
as an `in × N` matrix. The out `y` will be a vector or batch of length `out`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
```julia
julia> d = Dense(5, 2)
Dense(5, 2)
julia> d(rand(5))
2-element Array{Float32,1}:
-0.16210233
0.12311903```
Tracked 2-element Array{Float64,1}:
0.00257447
-0.00449443
```
"""
struct Dense{F,S<:AbstractArray,T<:AbstractArray}
struct Dense{F,S,T}
W::S
b::T
σ::F
@ -115,7 +75,7 @@ function Dense(in::Integer, out::Integer, σ = identity;
return Dense(initW(out, in), initb(out), σ)
end
@functor Dense
@treelike Dense
function (a::Dense)(x::AbstractArray)
W, b, σ = a.W, a.b, a.σ
@ -128,31 +88,10 @@ function Base.show(io::IO, l::Dense)
print(io, ")")
end
# Try to avoid hitting generic matmul in some simple cases
# Base's matmul is so slow that it's worth the extra conversion to hit BLAS
(a::Dense{<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::Dense{<:Any,W})(x::AbstractArray{<:AbstractFloat}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
"""
outdims(l::Dense, isize)
Calculate the output dimensions given the input dimensions, `isize`.
```julia
m = Dense(10, 5)
outdims(m, (5, 2)) == (5,)
outdims(m, (10,)) == (5,)
```
"""
outdims(l::Dense, isize) = (size(l.W)[1],)
"""
Diagonal(in::Integer)
Create an element-wise linear transformation layer with learnable
Creates an element-wise linear transformation layer with learnable
vectors `α` and `β`:
y = α .* x .+ β
@ -167,7 +106,7 @@ end
Diagonal(in::Integer; initα = ones, initβ = zeros) =
Diagonal(initα(in), initβ(in))
@functor Diagonal
@treelike Diagonal
function (a::Diagonal)(x)
α, β = a.α, a.β
@ -178,83 +117,10 @@ function Base.show(io::IO, l::Diagonal)
print(io, "Diagonal(", length(l.α), ")")
end
outdims(l::Diagonal, isize) = (length(l.α),)
# Try to avoid hitting generic matmul in some simple cases
# Base's matmul is so slow that it's worth the extra conversion to hit BLAS
(a::Dense{<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
"""
Maxout(over)
The [Maxout](https://arxiv.org/pdf/1302.4389.pdf) layer has a number of
internal layers which all receive the same input. It returns the elementwise
maximum of the internal layers' outputs.
Maxout over linear dense layers satisfies the univeral approximation theorem.
"""
struct Maxout{FS<:Tuple}
over::FS
end
"""
Maxout(f, n_alts)
Construct a Maxout layer over `n_alts` instances of the layer given by `f`.
The function takes no arguments and should return some callable layer.
Conventionally, this is a linear dense layer.
# Examples
This constructs a `Maxout` layer over 4 internal dense linear layers, each
identical in structure (784 inputs, 128 outputs):
```julia
insize = 784
outsize = 128
Maxout(()->Dense(insize, outsize), 4)
```
"""
function Maxout(f, n_alts)
over = Tuple(f() for _ in 1:n_alts)
return Maxout(over)
end
@functor Maxout
function (mo::Maxout)(input::AbstractArray)
mapreduce(f -> f(input), (acc, out) -> max.(acc, out), mo.over)
end
outdims(l::Maxout, isize) = outdims(first(l.over), isize)
"""
SkipConnection(layer, connection)
Create a skip connection which consists of a layer or `Chain` of consecutive
layers and a shortcut connection linking the block's input to the output
through a user-supplied 2-argument callable. The first argument to the callable
will be propagated through the given `layer` while the second is the unchanged,
"skipped" input.
The simplest "ResNet"-type connection is just `SkipConnection(layer, +)`,
and requires the output of the layers to be the same shape as the input.
Here is a more complicated example:
```julia
m = Conv((3,3), 4=>7, pad=(1,1))
x = ones(5,5,4,10);
size(m(x)) == (5, 5, 7, 10)
sm = SkipConnection(m, (mx, x) -> cat(mx, x, dims=3))
size(sm(x)) == (5, 5, 11, 10)
```
"""
struct SkipConnection
layers
connection #user can pass arbitrary connections here, such as (a,b) -> a + b
end
@functor SkipConnection
function (skip::SkipConnection)(input)
skip.connection(skip.layers(input), input)
end
function Base.show(io::IO, b::SkipConnection)
print(io, "SkipConnection(", b.layers, ", ", b.connection, ")")
end
(a::Dense{<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))

View File

@ -1,140 +1,56 @@
using NNlib: conv, ∇conv_data, depthwiseconv, output_size
using NNlib: conv, ∇conv_data, depthwiseconv
# pad dims of x with dims of y until ndims(x) == ndims(y)
_paddims(x::Tuple, y::Tuple) = (x..., y[(end - (length(y) - length(x) - 1)):end]...)
_convtransoutdims(isize, ksize, ssize, dsize, pad) = (isize .- 1).*ssize .+ 1 .+ (ksize .- 1).*dsize .- (pad[1:2:end] .+ pad[2:2:end])
@generated sub2(::Val{N}) where N = :(Val($(N-2)))
expand(N, i::Tuple) = i
expand(N, i::Integer) = ntuple(_ -> i, N)
"""
SamePad
Conv(size, in=>out)
Conv(size, in=>out, relu)
Padding for convolutional layers will be calculated so that outputshape == inputshape when stride = 1.
For stride > 1 the output shape depends on the type of convolution layer.
"""
struct SamePad end
calc_padding(pad, k::NTuple{N,T}, dilation, stride) where {T,N}= expand(Val(2*N), pad)
function calc_padding(::SamePad, k::NTuple{N,T}, dilation, stride) where {N,T}
#Ref: "A guide to convolution arithmetic for deep learning" https://arxiv.org/pdf/1603.07285
# Effective kernel size, including dilation
k_eff = @. k + (k - 1) * (dilation - 1)
# How much total padding needs to be applied?
pad_amt = @. k_eff - 1
# In case amount of padding is odd we need to apply different amounts to each side.
return Tuple(mapfoldl(i -> [ceil(Int, i/2), floor(Int, i/2)], vcat, pad_amt))
end
"""
Conv(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
filter = (2,2)
in = 1
out = 16
Conv((2, 2), 1=>16, relu)
Standard convolutional layer. `filter` should be a tuple like `(2, 2)`.
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
Example: Applying Conv layer to a 1-channel input using a 2x2 window size,
giving us a 16-channel output. Output is activated with ReLU.
size = (2,2)
in = 1
out = 16
Conv((2, 2), 1=>16, relu)
Data should be stored in WHCN order (width, height, # channels, # batches).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
# Examples
Apply a `Conv` layer to a 1-channel input using a 2×2 window filter size, giving us a
16-channel output. Output is activated with ReLU.
```julia
filter = (2,2)
in = 1
out = 16
Conv(filter, in => out, relu)
```
"""
struct Conv{N,M,F,A,V}
struct Conv{N,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
pad::NTuple{N,Int}
dilation::NTuple{N,Int}
end
"""
Conv(weight::AbstractArray, bias::AbstractArray)
Conv(weight::AbstractArray, bias::AbstractArray, activation)
Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} =
Conv(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
Constructs the convolutional layer with user defined weight and bias arrays.
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
Conv(init(k..., ch...), zeros(ch[2]), σ,
stride = stride, pad = pad, dilation = dilation)
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
There is also a keyword-only constuctor available for all convoultional
layers.
```julia
weight = rand(Float32, 3, 3, 5)
bias = zeros(Float32, 5)
Conv(weight = weight,
bias = bias,
σ = sigmoid)
```
"""
function Conv(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return Conv(σ, w, b, stride, pad, dilation)
end
function Conv(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
Conv(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
"""
convfilter(filter::Tuple, in=>out)
Constructs a standard convolutional weight matrix with given `filter` and
channels from `in` to `out`.
Accepts the keyword `init` (default: `glorot_uniform`) to control the sampling
distribution.
See also: [`depthwiseconvfilter`](@ref)
"""
convfilter(filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform) where N = init(filter..., ch...)
function Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, ch, init = init), bias = zeros(ch[2])) where N
Conv(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor Conv
@treelike Conv
function (c::Conv)(x::AbstractArray)
# TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, ntuple(_->1, length(c.stride))..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(conv(x, c.weight, cdims) .+ b)
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
end
function Base.show(io::IO, l::Conv)
@ -151,106 +67,39 @@ end
a(T.(x))
"""
outdims(l::Conv, isize::Tuple)
ConvTranspose(size, in=>out)
ConvTranspose(size, in=>out, relu)
Calculate the output dimensions given the input dimensions `isize`.
Batch size and channel size are ignored as per [NNlib.jl](https://github.com/FluxML/NNlib.jl).
```julia
m = Conv((3, 3), 3 => 16)
outdims(m, (10, 10)) == (8, 8)
outdims(m, (10, 10, 1, 3)) == (8, 8)
```
"""
outdims(l::Conv, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
ConvTranspose(filter, in=>out)
ConvTranspose(filter, in=>out, activation)
ConvTranspose(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
Standard convolutional transpose layer. `filter` should be a tuple like `(2, 2)`.
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == stride * inputsize - stride + 1.
"""
struct ConvTranspose{N,M,F,A,V}
struct ConvTranspose{N,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
pad::NTuple{N,Int}
dilation::NTuple{N,Int}
end
"""
ConvTranspose(weight::AbstractArray, bias::AbstractArray)
ConvTranspose(weight::AbstractArray, bias::AbstractArray, activation)
ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N} =
ConvTranspose(σ, w, b, expand.(sub2(Val(N)), (stride, pad, dilation))...)
Constructs the convolutional transpose layer with user defined weight and bias arrays.
forward pass.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function ConvTranspose(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return ConvTranspose(σ, w, b, stride, pad, dilation)
end
function ConvTranspose(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
ConvTranspose(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, reverse(ch), init = init), bias = zeros(ch[2])) where N
ConvTranspose(weight, bias, σ,
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor ConvTranspose
function conv_transpose_dims(c::ConvTranspose, x::AbstractArray)
# Calculate size of "input", from ∇conv_data()'s perspective...
combined_pad = (c.pad[1:2:end] .+ c.pad[2:2:end])
I = (size(x)[1:end-2] .- 1).*c.stride .+ 1 .+ (size(c.weight)[1:end-2] .- 1).*c.dilation .- combined_pad
C_in = size(c.weight)[end-1]
batch_size = size(x)[end]
# Create DenseConvDims() that looks like the corresponding conv()
return DenseConvDims((I..., C_in, batch_size), size(c.weight);
stride=c.stride,
padding=c.pad,
dilation=c.dilation,
)
end
# TODO: Find proper fix for https://github.com/FluxML/Flux.jl/issues/900
@nograd conv_transpose_dims
@treelike ConvTranspose
function (c::ConvTranspose)(x::AbstractArray)
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = conv_transpose_dims(c, x)
σ.(∇conv_data(x, c.weight, cdims) .+ b)
σ.(∇conv_data(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b)
end
function Base.show(io::IO, l::ConvTranspose)
@ -265,328 +114,97 @@ end
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
outdims(l::ConvTranspose{N}, isize) where N = _convtransoutdims(isize[1:2], size(l.weight)[1:N], l.stride, l.dilation, l.pad)
"""
DepthwiseConv(filter::Tuple, in=>out)
DepthwiseConv(filter::Tuple, in=>out, activation)
DepthwiseConv(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
DepthwiseConv(size, in)
DepthwiseConv(size, in=>mul)
DepthwiseConv(size, in=>mul, relu)
Depthwise convolutional layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Note that `out` must be an integer multiple of `in`.
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
`in` and `mul` specify the number of input channels and channel multiplier respectively.
In case the `mul` is not specified it is taken as 1.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
Takes the keyword arguments `pad` and `stride`.
"""
struct DepthwiseConv{N,M,F,A,V}
struct DepthwiseConv{N,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
dilation::NTuple{N,Int}
pad::NTuple{N,Int}
end
"""
DepthwiseConv(weight::AbstractArray, bias::AbstractArray)
DepthwiseConv(weight::AbstractArray, bias::AbstractArray, activation)
DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
stride = 1, pad = 0) where {T,N} =
DepthwiseConv(σ, w, b, expand.(sub2(Val(N)), (stride, pad))...)
Constructs the `DepthwiseConv` layer with user defined weight and bias arrays.
forward pass.
DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = glorot_uniform,
stride = 1, pad = 0) where N =
DepthwiseConv(init(k..., 1, ch), zeros(ch), σ,
stride = stride, pad = pad)
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform,
stride::NTuple{N,Integer} = map(_->1,k),
pad::NTuple{N,Integer} = map(_->0,k)) where N =
DepthwiseConv(init(k..., ch[2], ch[1]), zeros(ch[2] * ch[1]), σ,
stride = stride, pad = pad)
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function DepthwiseConv(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return DepthwiseConv(σ, w, b, stride, pad, dilation)
end
function DepthwiseConv(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
DepthwiseConv(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
"""
depthwiseconvfilter(filter::Tuple, in=>out)
Constructs a depthwise convolutional weight array defined by `filter` and channels
from `in` to `out`.
Accepts the keyword `init` (default: `glorot_uniform`) to control the sampling
distribution.
See also: [`convfilter`](@ref)
"""
depthwiseconvfilter(filter::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer};
init = glorot_uniform) where N = init(filter..., div(ch[2], ch[1]), ch[1])
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = depthwiseconvfilter(k, ch, init = init), bias = zeros(ch[2])) where N
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
return DepthwiseConv(
weight,
bias,
σ;
stride = stride,
pad = pad,
dilation = dilation
)
end
@functor DepthwiseConv
@treelike DepthwiseConv
function (c::DepthwiseConv)(x)
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
σ.(depthwiseconv(x, c.weight, stride = c.stride, pad = c.pad) .+ b)
end
function Base.show(io::IO, l::DepthwiseConv)
print(io, "DepthwiseConv(", size(l.weight)[1:end-2])
print(io, ", ", size(l.weight)[end], "=>", prod(size(l.weight)[end-1:end]))
print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
outdims(l::DepthwiseConv, isize) =
output_size(DepthwiseConvDims(_paddims(isize, (1, 1, size(l.weight)[end], 1)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
CrossCor(filter, in=>out)
CrossCor(filter, in=>out, activation)
CrossCor(filter, in => out, σ = identity; init = glorot_uniform,
stride = 1, pad = 0, dilation = 1)
MaxPool(k)
Standard cross convolutional layer. `filter` should be a tuple like `(2, 2)`.
`in` and `out` specify the number of input and output channels respectively.
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
Data should be stored in WHCN order (width, height, # channels, batch size).
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
and a batch of 50 would be a `100×100×3×50` array.
Accepts keyword arguments `weight` and `bias` to set the corresponding fields.
Setting `bias` to `Flux.Zeros()` will switch bias off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
# Examples
Apply a `CrossCor` layer to a 1-channel input using a 2×2 window filter size, giving us a
16-channel output. Output is activated with ReLU.
```julia
filter = (2,2)
in = 1
out = 16
CrossCor((2, 2), 1=>16, relu)
```
Takes the keyword arguments `pad` and `stride`.
"""
struct CrossCor{N,M,F,A,V}
σ::F
weight::A
bias::V
stride::NTuple{N,Int}
pad::NTuple{M,Int}
dilation::NTuple{N,Int}
end
"""
CrossCor(weight::AbstractArray, bias::AbstractArray)
CrossCor(weight::AbstractArray, bias::AbstractArray, activation)
Constructs the standard cross convolutional layer with user defined weight and bias
arrays.
Setting `bias` to `Flux.Zeros()` would switch `bias` off for the layer.
Takes the keyword arguments `pad`, `stride` and `dilation`.
For keyword-only constuctor, see also [`Conv`](@ref)
"""
function CrossCor(w::AbstractArray{T,N}, b::Union{Zeros, AbstractVector{T}}, σ = identity;
stride = 1, pad = 0, dilation = 1) where {T,N}
stride = expand(Val(N-2), stride)
dilation = expand(Val(N-2), dilation)
pad = calc_padding(pad, size(w)[1:N-2], dilation, stride)
return CrossCor(σ, w, b, stride, pad, dilation)
end
function CrossCor(;weight::AbstractArray{T,N}, bias::Union{Zeros, AbstractVector{T}},
activation = identity, stride = 1, pad = 0, dilation = 1) where {T,N}
CrossCor(weight, bias, activation, stride = stride, pad = pad, dilation = dilation)
end
function CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, ch, init = init), bias = zeros(ch[2])) where N
CrossCor(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation)
end
@functor CrossCor
function crosscor(x, w, ddims::DenseConvDims)
ddims = DenseConvDims(ddims, F=true)
return conv(x, w, ddims)
end
function (c::CrossCor)(x::AbstractArray)
# TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(crosscor(x, c.weight, cdims) .+ b)
end
function Base.show(io::IO, l::CrossCor)
print(io, "CrossCor(", size(l.weight)[1:ndims(l.weight)-2])
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
l.σ == identity || print(io, ", ", l.σ)
print(io, ")")
end
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
invoke(a, Tuple{AbstractArray}, x)
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
a(T.(x))
outdims(l::CrossCor, isize) =
output_size(DenseConvDims(_paddims(isize, size(l.weight)), size(l.weight); stride = l.stride, padding = l.pad, dilation = l.dilation))
"""
GlobalMaxPool()
Global max pooling layer.
Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output,
by performing max pooling on the complete (w,h)-shaped feature maps.
"""
struct GlobalMaxPool end
function (g::GlobalMaxPool)(x)
# Input size
x_size = size(x)
# Kernel size
k = x_size[1:end-2]
# Pooling dimensions
pdims = PoolDims(x, k)
return maxpool(x, pdims)
end
function Base.show(io::IO, g::GlobalMaxPool)
print(io, "GlobalMaxPool()")
end
"""
GlobalMeanPool()
Global mean pooling layer.
Transforms (w,h,c,b)-shaped input into (1,1,c,b)-shaped output,
by performing mean pooling on the complete (w,h)-shaped feature maps.
"""
struct GlobalMeanPool end
function (g::GlobalMeanPool)(x)
# Input size
x_size = size(x)
# Kernel size
k = x_size[1:end-2]
# Pooling dimensions
pdims = PoolDims(x, k)
return meanpool(x, pdims)
end
function Base.show(io::IO, g::GlobalMeanPool)
print(io, "GlobalMeanPool()")
end
"""
MaxPool(k; pad = 0, stride = k)
Max pooling layer. `k` is the size of the window for each dimension of the input.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
=======
"""
struct MaxPool{N,M}
struct MaxPool{N}
k::NTuple{N,Int}
pad::NTuple{M,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
end
function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = calc_padding(pad, k, 1, stride)
return MaxPool(k, pad, stride)
end
MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
MaxPool(k, expand(Val(N), pad), expand(Val(N), stride))
function (m::MaxPool)(x)
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return maxpool(x, pdims)
end
(m::MaxPool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::MaxPool)
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
outdims(l::MaxPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))
"""
MeanPool(k; pad = 0, stride = k)
MeanPool(k)
Mean pooling layer. `k` is the size of the window for each dimension of the input.
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
Use `pad=SamePad()` to apply padding so that outputsize == inputsize / stride.
Takes the keyword arguments `pad` and `stride`.
"""
struct MeanPool{N,M}
struct MeanPool{N}
k::NTuple{N,Int}
pad::NTuple{M,Int}
pad::NTuple{N,Int}
stride::NTuple{N,Int}
end
function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
stride = expand(Val(N), stride)
pad = calc_padding(pad, k, 1, stride)
return MeanPool(k, pad, stride)
end
MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N =
MeanPool(k, expand(Val(N), pad), expand(Val(N), stride))
function (m::MeanPool)(x)
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
return meanpool(x, pdims)
end
(m::MeanPool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride)
function Base.show(io::IO, m::MeanPool)
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
end
outdims(l::MeanPool{N}, isize) where N = output_size(PoolDims(_paddims(isize, (l.k..., 1, 1)), l.k; stride = l.stride, padding = l.pad))

View File

@ -2,107 +2,66 @@ istraining() = false
@adjoint istraining() = true, _ -> nothing
_isactive(m) = isnothing(m.active) ? istraining() : m.active
"""
Dropout(p)
_dropout_shape(s, ::Colon) = size(s)
_dropout_shape(s, dims) = tuple((i dims ? 1 : si for (i, si) enumerate(size(s)))...)
A Dropout layer. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
reduces overfitting during training.
Does nothing to the input once in [`testmode!`](@ref).
"""
mutable struct Dropout{F}
p::F
function Dropout(p)
@assert 0 p 1
new{typeof(p)}(p)
end
end
_dropout_kernel(y::T, p, q) where {T} = y > p ? T(1 / q) : T(0)
"""
dropout(x, p; dims = :)
The dropout function. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1 / (1 - p)`. `dims` specifies the unbroadcasted dimensions,
e.g. `dims=1` applies dropout along columns and `dims=2` along rows.
This is used as a regularisation, i.e. it reduces overfitting during training.
See also the [`Dropout`](@ref) layer.
"""
dropout(x, p; dims = :) = x
@adjoint function dropout(x, p; dims = :)
y = rand!(similar(x, _dropout_shape(x, dims)))
y .= _dropout_kernel.(y, p, 1 - p)
return x .* y, Δ -> (Δ .* y, nothing)
end
"""
Dropout(p, dims = :)
Dropout layer. In the forward pass, apply the [`Flux.dropout`](@ref) function on the input.
Does nothing to the input once [`Flux.testmode!`](@ref) is `true`.
"""
mutable struct Dropout{F,D}
p::F
dims::D
active::Union{Bool, Nothing}
end
# TODO: deprecate in v0.11
Dropout(p, dims) = Dropout(p, dims, nothing)
function Dropout(p; dims = :)
@assert 0 p 1
Dropout{typeof(p),typeof(dims)}(p, dims, nothing)
end
function (a::Dropout)(x)
_isactive(a) || return x
return dropout(x, a.p; dims = a.dims)
end
testmode!(m::Dropout, mode = true) =
(m.active = (isnothing(mode) || mode == :auto) ? nothing : !mode; m)
function Base.show(io::IO, d::Dropout)
print(io, "Dropout(", d.p)
d.dims != (:) && print(io, ", dims = $(repr(d.dims))")
print(io, ")")
istraining() || return x
y = similar(x)
rand!(y)
y .= _dropout_kernel.(y, a.p, 1 - a.p)
return x .* y
end
"""
AlphaDropout(p)
A dropout layer. Used in
[Self-Normalizing Neural Networks](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf).
The AlphaDropout layer ensures that mean and variance of activations
remain the same as before.
Does nothing to the input once [`testmode!`](@ref) is true.
A dropout layer. It is used in Self-Normalizing Neural Networks.
(https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)
The AlphaDropout layer ensures that mean and variance of activations remains the same as before.
"""
mutable struct AlphaDropout{F}
p::F
active::Union{Bool, Nothing}
function AlphaDropout(p, active = nothing)
function AlphaDropout(p)
@assert 0 p 1
new{typeof(p)}(p, active)
new{typeof(p)}(p)
end
end
function (a::AlphaDropout)(x)
_isactive(a) || return x
istraining() || return x
λ = eltype(x)(1.0507009873554804934193349852946)
α = eltype(x)(1.6732632423543772848170429916717)
α1 = eltype(x)(-λ*α)
noise = randn(eltype(x), size(x))
x = @. x*(noise > (1 - a.p)) + α1 * (noise < (1 - a.p))
x = @. x*(noise > (1 - a.p)) + α1 * (noise <= (1 - a.p))
A = (a.p + a.p * (1 - a.p) * α1 ^ 2)^0.5
B = -A * α1 * (1 - a.p)
x = @. A * x + B
return x
end
testmode!(m::AlphaDropout, mode = true) =
(m.active = (isnothing(mode) || mode == :auto) ? nothing : !mode; m)
"""
LayerNorm(h::Integer)
A [normalisation layer](https://arxiv.org/pdf/1607.06450.pdf) designed to be
used with recurrent hidden states of size `h`. Normalises the mean and standard
deviation of each input before applying a per-neuron gain/bias.
used with recurrent hidden states of size `h`. Normalises the mean/stddev of
each input before applying a per-neuron gain/bias.
"""
struct LayerNorm{T}
diag::Diagonal{T}
@ -111,7 +70,7 @@ end
LayerNorm(h::Integer) =
LayerNorm(Diagonal(h))
@functor LayerNorm
@treelike LayerNorm
(a::LayerNorm)(x) = a.diag(normalise(x))
@ -124,8 +83,8 @@ end
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
[Batch Normalization](https://arxiv.org/pdf/1502.03167.pdf) layer.
`channels` should be the size of the channel dimension in your data (see below).
Batch Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
@ -135,9 +94,10 @@ it's the usual channel dimension.)
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
Use [`testmode!`](@ref) during inference.
See [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf).
# Examples
Example:
```julia
m = Chain(
Dense(28^2, 64),
@ -155,29 +115,24 @@ mutable struct BatchNorm{F,V,W,N}
σ²::W # moving std
ϵ::N
momentum::N
active::Union{Bool, Nothing}
end
# TODO: deprecate in v0.11
BatchNorm(λ, β, γ, μ, σ², ϵ, momentum) = BatchNorm(λ, β, γ, μ, σ², ϵ, momentum, nothing)
BatchNorm(chs::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
BatchNorm(λ, initβ(chs), initγ(chs),
zeros(chs), ones(chs), ϵ, momentum, nothing)
trainable(bn::BatchNorm) = (bn.β, bn.γ)
zeros(chs), ones(chs), ϵ, momentum)
function (BN::BatchNorm)(x)
size(x, ndims(x)-1) == length(BN.β) ||
error("BatchNorm expected $(length(BN.β)) channels, got $(size(x, ndims(x)-1))")
dims = length(size(x))
channels = size(x, dims-1)
affine_shape = ntuple(i->i == ndims(x) - 1 ? size(x, i) : 1, ndims(x))
m = div(prod(size(x)), channels)
affine_shape = ones(Int, dims)
affine_shape[end-1] = channels
m = prod(size(x)[1:end-2]) * size(x)[end]
γ = reshape(BN.γ, affine_shape...)
β = reshape(BN.β, affine_shape...)
if !_isactive(BN)
if !istraining()
μ = reshape(BN.μ, affine_shape...)
σ² = reshape(BN.σ², affine_shape...)
ϵ = BN.ϵ
@ -188,10 +143,9 @@ function (BN::BatchNorm)(x)
σ² = sum((x .- μ) .^ 2, dims = axes) ./ m
ϵ = convert(T, BN.ϵ)
# update moving mean/std
mtm = BN.momentum
S = eltype(BN.μ)
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* S.(reshape(μ, :))
BN.σ² = (1 - mtm) .* BN.σ² .+ (mtm * m / (m - 1)) .* S.(reshape(σ², :))
mtm = convert(T, BN.momentum)
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* reshape(μ, :)
BN.σ² = (1 - mtm) .* BN.σ² .+ (mtm * m / (m - 1)) .* reshape(σ², :)
end
let λ = BN.λ
@ -200,10 +154,11 @@ function (BN::BatchNorm)(x)
end
end
@functor BatchNorm
children(BN::BatchNorm) =
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ², BN.ϵ, BN.momentum)
testmode!(m::BatchNorm, mode = true) =
(m.active = (isnothing(mode) || mode == :auto) ? nothing : !mode; m)
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
BatchNorm(BN.λ, f(BN.β), f(BN.γ), f(BN.μ), f(BN.σ²), BN.ϵ, BN.momentum)
function Base.show(io::IO, l::BatchNorm)
print(io, "BatchNorm($(join(size(l.β), ", "))")
@ -211,6 +166,35 @@ function Base.show(io::IO, l::BatchNorm)
print(io, ")")
end
"""
InstanceNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Instance Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
See [Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022).
Example:
```julia
m = Chain(
Dense(28^2, 64),
InstanceNorm(64, relu),
Dense(64, 10),
InstanceNorm(10),
softmax)
```
"""
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
mutable struct InstanceNorm{F,V,W,N}
@ -221,46 +205,12 @@ mutable struct InstanceNorm{F,V,W,N}
σ²::W # moving std
ϵ::N
momentum::N
active::Union{Bool, Nothing}
end
# TODO: deprecate in v0.11
"""
InstanceNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
[Instance Normalization](https://arxiv.org/abs/1607.08022) layer.
`channels` should be the size of the channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`InstanceNorm` computes the mean and variance for each each `W×H×1×1` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
Use [`testmode!`](@ref) during inference.
# Examples
```julia
m = Chain(
Dense(28^2, 64),
InstanceNorm(64, relu),
Dense(64, 10),
InstanceNorm(10),
softmax)
```
"""
InstanceNorm(λ, β, γ, μ, σ², ϵ, momentum) = InstanceNorm(λ, β, γ, μ, σ², ϵ, momentum, nothing)
InstanceNorm(chs::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
InstanceNorm(λ, initβ(chs), initγ(chs),
zeros(chs), ones(chs), ϵ, momentum, nothing)
trainable(in::InstanceNorm) = (in.β, in.γ)
zeros(chs), ones(chs), ϵ, momentum)
function (in::InstanceNorm)(x)
size(x, ndims(x)-1) == length(in.β) ||
@ -271,11 +221,13 @@ function (in::InstanceNorm)(x)
dims = length(size(x))
c = size(x, dims-1)
bs = size(x, dims)
affine_shape = ntuple(i->i == ndims(x) - 1 || i == ndims(x) ? size(x, i) : 1, ndims(x))
m = div(prod(size(x)), c*bs)
affine_shape = ones(Int, dims)
affine_shape[end-1] = c
affine_shape[end] = bs
m = prod(size(x)[1:end-2])
γ, β = expand_inst(in.γ, affine_shape), expand_inst(in.β, affine_shape)
if !_isactive(in)
if !istraining()
μ = expand_inst(in.μ, affine_shape)
σ² = expand_inst(in.σ², affine_shape)
ϵ = in.ϵ
@ -286,11 +238,11 @@ function (in::InstanceNorm)(x)
axes = 1:dims-2 # axes to reduce along (all but channels and batch size axes)
μ = mean(x, dims = axes)
σ² = mean((x .- μ) .^ 2, dims = axes)
S = eltype(in.μ)
# update moving mean/std
mtm = in.momentum
in.μ = dropdims(mean(repeat((1 - mtm) .* in.μ, outer=[1, bs]) .+ mtm .* S.(reshape(μ, (c, bs))), dims = 2), dims=2)
in.σ² = dropdims(mean((repeat((1 - mtm) .* in.σ², outer=[1, bs]) .+ (mtm * m / (m - 1)) .* S.(reshape(σ², (c, bs)))), dims = 2), dims=2)
mtm = convert(T, in.momentum)
in.μ = dropdims(mean(repeat((1 - mtm) .* in.μ, outer=[1, bs]) .+ mtm .* reshape(μ, (c, bs)), dims = 2), dims=2)
in.σ² = dropdims(mean((repeat((1 - mtm) .* in.σ², outer=[1, bs]) .+ (mtm * m / (m - 1)) .* reshape(σ², (c, bs))), dims = 2), dims=2)
end
let λ = in.λ
@ -299,118 +251,14 @@ function (in::InstanceNorm)(x)
end
end
@functor InstanceNorm
children(in::InstanceNorm) =
(in.λ, in.β, in.γ, in.μ, in.σ², in.ϵ, in.momentum)
testmode!(m::InstanceNorm, mode = true) =
(m.active = (isnothing(mode) || mode == :auto) ? nothing : !mode; m)
mapchildren(f, in::InstanceNorm) = # e.g. mapchildren(cu, in)
InstanceNorm(in.λ, f(in.β), f(in.γ), f(in.μ), f(in.σ²), in.ϵ, in.momentum)
function Base.show(io::IO, l::InstanceNorm)
print(io, "InstanceNorm($(join(size(l.β), ", "))")
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end
"""
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i),
ϵ = 1f-5, momentum = 0.1f0)
[Group Normalization](https://arxiv.org/pdf/1803.08494.pdf) layer.
This layer can outperform Batch Normalization and Instance Normalization.
`chs` is the number of channels, the channel dimension of your input.
For an array of N dimensions, the `N-1`th index is the channel dimension.
`G` is the number of groups along which the statistics are computed.
The number of channels must be an integer multiple of the number of groups.
Use [`testmode!`](@ref) during inference.
# Examples
```julia
m = Chain(Conv((3,3), 1=>32, leakyrelu;pad = 1),
GroupNorm(32,16))
# 32 channels, 16 groups (G = 16), thus 2 channels per group used
```
"""
mutable struct GroupNorm{F,V,W,N,T}
G::T # number of groups
λ::F # activation function
β::V # bias
γ::V # scale
μ::W # moving mean
σ²::W # moving std
ϵ::N
momentum::N
active::Union{Bool, Nothing}
end
# TODO: deprecate in v0.11
GroupNorm(G, λ, β, γ, μ, σ², ϵ, momentum) = GroupNorm(G, λ, β, γ, μ, σ², ϵ, momentum, nothing)
GroupNorm(chs::Integer, G::Integer, λ = identity;
initβ = (i) -> zeros(Float32, i), initγ = (i) -> ones(Float32, i), ϵ = 1f-5, momentum = 0.1f0) =
GroupNorm(G, λ, initβ(chs), initγ(chs),
zeros(G,1), ones(G,1), ϵ, momentum, nothing)
trainable(gn::GroupNorm) = (gn.β, gn.γ)
function(gn::GroupNorm)(x)
size(x,ndims(x)-1) == length(gn.β) || error("Group Norm expected $(length(gn.β)) channels, but got $(size(x,ndims(x)-1)) channels")
ndims(x) > 2 || error("Need to pass at least 3 channels for Group Norm to work")
(size(x,ndims(x) -1))%gn.G == 0 || error("The number of groups ($(gn.G)) must divide the number of channels ($(size(x,ndims(x) -1)))")
dims = length(size(x))
groups = gn.G
channels = size(x, dims-1)
batches = size(x,dims)
channels_per_group = div(channels,groups)
affine_shape = ntuple(i->i == ndims(x) - 1 ? size(x, i) : 1, ndims(x))
# Output reshaped to (W,H...,C/G,G,N)
μ_affine_shape = ntuple(i->i == ndims(x) ? groups : 1, ndims(x) + 1)
m = prod(size(x)[1:end-2]) * channels_per_group
γ = reshape(gn.γ, affine_shape...)
β = reshape(gn.β, affine_shape...)
y = reshape(x,((size(x))[1:end-2]...,channels_per_group,groups,batches))
if !_isactive(gn)
og_shape = size(x)
μ = reshape(gn.μ, μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
σ² = reshape(gn.σ², μ_affine_shape...) # Shape : (1,1,...C/G,G,1)
ϵ = gn.ϵ
else
T = eltype(x)
og_shape = size(x)
axes = [(1:ndims(y)-2)...] # axes to reduce along (all but channels axis)
μ = mean(y, dims = axes)
σ² = mean((y .- μ) .^ 2, dims = axes)
ϵ = convert(T, gn.ϵ)
# update moving mean/std
mtm = gn.momentum
S = eltype(gn.μ)
gn.μ = mean((1 - mtm) .* gn.μ .+ mtm .* S.(reshape(μ, (groups,batches))),dims=2)
gn.σ² = mean((1 - mtm) .* gn.σ² .+ (mtm * m / (m - 1)) .* S.(reshape(σ², (groups,batches))),dims=2)
end
let λ = gn.λ
= (y .- μ) ./ sqrt.(σ² .+ ϵ)
# Reshape x̂
= reshape(,og_shape)
λ.(γ .* .+ β)
end
end
@functor GroupNorm
testmode!(m::GroupNorm, mode = true) =
(m.active = (isnothing(mode) || mode == :auto) ? nothing : !mode; m)
function Base.show(io::IO, l::GroupNorm)
print(io, "GroupNorm($(join(size(l.β), ", "))")
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end

View File

@ -1,5 +1,5 @@
gate(h, n) = (1:h) .+ h*(n-1)
gate(x::AbstractVector, h, n) = @view x[gate(h,n)]
gate(x::AbstractVector, h, n) = x[gate(h,n)]
gate(x::AbstractMatrix, h, n) = x[gate(h,n),:]
# Stateful recurrence
@ -12,16 +12,16 @@ in the background. `cell` should be a model of the form:
h, y = cell(h, x...)
For example, here's a recurrent network that keeps a running total of its inputs:
For example, here's a recurrent network that keeps a running total of its inputs.
```julia
accum(h, x) = (h + x, x)
accum(h, x) = (h+x, x)
rnn = Flux.Recur(accum, 0)
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
rnn(2) # 2
rnn(3) # 3
rnn.state # 5
rnn.(1:10) # apply to a sequence
rnn.state # 60
```
"""
mutable struct Recur{T}
@ -38,22 +38,21 @@ function (m::Recur)(xs...)
return y
end
@functor Recur cell, init
@treelike Recur cell, init
Base.show(io::IO, m::Recur) = print(io, "Recur(", m.cell, ")")
"""
reset!(rnn)
Reset the hidden state of a recurrent layer back to its original value.
Reset the hidden state of a recurrent layer back to its original value. See also
`truncate!`.
Assuming you have a `Recur` layer `rnn`, this is roughly equivalent to:
```julia
rnn.state = hidden(rnn.cell)
```
Assuming you have a `Recur` layer `rnn`, this is roughly equivalent to
rnn.state = hidden(rnn.cell)
"""
reset!(m::Recur) = (m.state = m.init)
reset!(m) = foreach(reset!, functor(m)[1])
reset!(m) = prefor(x -> x isa Recur && (x.state = x.init), m)
flip(f, xs) = reverse(f.(reverse(xs)))
@ -80,7 +79,7 @@ end
hidden(m::RNNCell) = m.h
@functor RNNCell
@treelike RNNCell
function Base.show(io::IO, l::RNNCell)
print(io, "RNNCell(", size(l.Wi, 2), ", ", size(l.Wi, 1))
@ -110,7 +109,7 @@ function LSTMCell(in::Integer, out::Integer;
init = glorot_uniform)
cell = LSTMCell(init(out * 4, in), init(out * 4, out), init(out * 4),
zeros(out), zeros(out))
cell.b[gate(out, 2)] .= 1
cell.b.data[gate(out, 2)] .= 1
return cell
end
@ -128,7 +127,7 @@ end
hidden(m::LSTMCell) = (m.h, m.c)
@functor LSTMCell
@treelike LSTMCell
Base.show(io::IO, l::LSTMCell) =
print(io, "LSTMCell(", size(l.Wi, 2), ", ", size(l.Wi, 1)÷4, ")")
@ -136,10 +135,10 @@ Base.show(io::IO, l::LSTMCell) =
"""
LSTM(in::Integer, out::Integer)
[Long Short Term Memory](https://www.researchgate.net/publication/13853244_Long_Short-term_Memory)
recurrent layer. Behaves like an RNN but generally exhibits a longer memory span over sequences.
Long Short Term Memory recurrent layer. Behaves like an RNN but generally
exhibits a longer memory span over sequences.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
"""
LSTM(a...; ka...) = Recur(LSTMCell(a...; ka...))
@ -169,7 +168,7 @@ end
hidden(m::GRUCell) = m.h
@functor GRUCell
@treelike GRUCell
Base.show(io::IO, l::GRUCell) =
print(io, "GRUCell(", size(l.Wi, 2), ", ", size(l.Wi, 1)÷3, ")")
@ -177,10 +176,10 @@ Base.show(io::IO, l::GRUCell) =
"""
GRU(in::Integer, out::Integer)
[Gated Recurrent Unit](https://arxiv.org/abs/1406.1078) layer. Behaves like an
RNN but generally exhibits a longer memory span over sequences.
Gated Recurrent Unit layer. Behaves like an RNN but generally
exhibits a longer memory span over sequences.
See [this article](https://colah.github.io/posts/2015-08-Understanding-LSTMs/)
See [this article](http://colah.github.io/posts/2015-08-Understanding-LSTMs/)
for a good overview of the internals.
"""
GRU(a...; ka...) = Recur(GRUCell(a...; ka...))

View File

@ -1,296 +1,51 @@
using NNlib: logsoftmax, logσ
# Cost functions
"""
mae(, y)
Return the mean of absolute error; calculated as
`sum(abs.(ŷ .- y)) / length(y)`.
"""
mae(, y) = sum(abs.( .- y)) * 1 // length(y)
"""
mse(, y)
Return the mean squared error between and y; calculated as
`sum((ŷ .- y).^2) / length(y)`.
# Examples
```jldoctest
julia> Flux.mse([0, 2], [1, 1])
1//1
```
"""
mse(, y) = sum(( .- y).^2) * 1 // length(y)
"""
msle(, y; ϵ=eps(eltype()))
Return the mean of the squared logarithmic errors; calculated as
`sum((log.(ŷ .+ ϵ) .- log.(y .+ ϵ)).^2) / length(y)`.
The `ϵ` term provides numerical stability.
Penalizes an under-predicted estimate greater than an over-predicted estimate.
"""
msle(, y; ϵ=eps(eltype())) = sum((log.( .+ ϵ) .- log.(y .+ ϵ)).^2) * 1 // length(y)
"""
huber_loss(, y; δ=1.0)
Return the mean of the [Huber loss](https://en.wikipedia.org/wiki/Huber_loss)
given the prediction `` and true values `y`.
| 0.5 * | - y|, for | - y| <= δ
Huber loss = |
| δ * (| - y| - 0.5 * δ), otherwise
"""
#TODO: remove dropgrad when Zygote can handle this function with CuArrays
function huber_loss(, y; δ=eltype()(1))
abs_error = abs.( .- y)
temp = Zygote.dropgrad(abs_error .< δ)
x = eltype()(0.5)
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
function crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
-sum(y .* log.() .* weight) * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Nothing)
return -sum(xlogy.(y, )) * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::Number)
return -sum(xlogy.(y, )) .* weight * 1 // size(y, 2)
end
function _crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat, weight::AbstractVector)
return -sum(xlogy.(y, ) .* weight) * 1 // size(y, 2)
end
"""
crossentropy(, y; weight = nothing)
Return the cross entropy between the given probability distributions;
calculated as `-sum(y .* log.(ŷ) .* weight) / size(y, 2)`.
`weight` can be `Nothing`, a `Number` or an `AbstractVector`.
`weight=nothing` acts like `weight=1` but is faster.
See also: [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.crossentropy(softmax([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3.085467254747739
```
"""
crossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight=nothing) = _crossentropy(, y, weight)
"""
logitcrossentropy(, y; weight = 1)
Return the crossentropy computed after a [`Flux.logsoftmax`](@ref) operation;
calculated as `-sum(y .* logsoftmax(ŷ) .* weight) / size(y, 2)`.
`logitcrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.crossentropy(softmax(ŷ), y)`](@ref) but it is more numerically stable.
See also: [`Flux.crossentropy`](@ref), [`Flux.binarycrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitcrossentropy([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3.085467254747738
```
"""
function logitcrossentropy(::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
return -sum(y .* logsoftmax() .* weight) * 1 // size(y, 2)
function logitcrossentropy(logŷ::AbstractVecOrMat, y::AbstractVecOrMat; weight = 1)
return -sum(y .* logsoftmax(logŷ) .* weight) * 1 // size(y, 2)
end
"""
binarycrossentropy(, y; ϵ=eps())
Return ``-y*\\log( + ϵ) - (1-y)*\\log(1- + ϵ)``. The `ϵ` term provides numerical stability.
Return `-y*log(ŷ + ϵ) - (1-y)*log(1-ŷ + ϵ)`. The ϵ term provides numerical stability.
Typically, the prediction `` is given by the output of a [`sigmoid`](@ref) activation.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.logitbinarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0])
3-element Array{Float64,1}:
1.424397097347566
0.35231664672364077
0.8616703662235441
```
julia> binarycrossentropy.(σ.([-1.1491, 0.8619, 0.3127]), [1, 1, 0.])
3-element Array{Float64,1}:
1.4244
0.352317
0.86167
"""
binarycrossentropy(, y; ϵ=eps()) = -xlogy(y, + ϵ) - xlogy(1 - y, 1 - + ϵ)
# Re-definition to fix interaction with CuArrays.
CuArrays.@cufunc binarycrossentropy(, y; ϵ=eps()) = -y*log( + ϵ) - (1 - y)*log(1 - + ϵ)
binarycrossentropy(, y; ϵ=eps()) = -y*log( + ϵ) - (1 - y)*log(1 - + ϵ)
"""
logitbinarycrossentropy(ŷ, y)
logitbinarycrossentropy(logŷ, y)
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable.
`logitbinarycrossentropy(logŷ, y)` is mathematically equivalent to `binarycrossentropy(σ(logŷ), y)`
but it is more numerically stable.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)
# Examples
```jldoctest
julia> Flux.logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0])
3-element Array{Float64,1}:
1.4243970973475661
0.35231664672364094
0.8616703662235443
```
julia> logitbinarycrossentropy.([-1.1491, 0.8619, 0.3127], [1, 1, 0.])
3-element Array{Float64,1}:
1.4244
0.352317
0.86167
"""
logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ()
# Re-definition to fix interaction with CuArrays.
CuArrays.@cufunc logitbinarycrossentropy(ŷ, y) = (1 - y)*ŷ - logσ()
logitbinarycrossentropy(logŷ, y) = (1 - y)*logŷ - logσ(logŷ)
"""
normalise(x; dims=1)
normalise(x::AbstractArray; dims=1)
Normalise `x` to mean 0 and standard deviation 1 across the dimensions given by `dims`.
Defaults to normalising over columns.
```jldoctest
julia> a = reshape(collect(1:9), 3, 3)
3×3 Array{Int64,2}:
1 4 7
2 5 8
3 6 9
julia> Flux.normalise(a)
3×3 Array{Float64,2}:
-1.22474 -1.22474 -1.22474
0.0 0.0 0.0
1.22474 1.22474 1.22474
julia> Flux.normalise(a, dims=2)
3×3 Array{Float64,2}:
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
-1.22474 0.0 1.22474
```
Normalises x to mean 0 and standard deviation 1, across the dimensions given by dims. Defaults to normalising over columns.
"""
function normalise(x::AbstractArray; dims=1)
μ′ = mean(x, dims = dims)
σ = std(x, dims = dims, mean = μ′, corrected=false)
return (x .- μ′) ./ σ
end
"""
kldivergence(, y)
Return the
[Kullback-Leibler divergence](https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence)
between the given probability distributions.
KL divergence is a measure of how much one probability distribution is different
from the other.
It is always non-negative and zero only when both the distributions are equal
everywhere.
"""
function kldivergence(, y)
entropy = sum(xlogx.(y)) * 1 //size(y,2)
cross_entropy = crossentropy(, y)
return entropy + cross_entropy
end
"""
poisson(, y)
Return how much the predicted distribution `` diverges from the expected Poisson
distribution `y`; calculated as `sum(ŷ .- y .* log.(ŷ)) / size(y, 2)`.
[More information.](https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/loss-functions/poisson).
"""
poisson(, y) = sum( .- xlogy.(y, )) * 1 // size(y,2)
"""
hinge(, y)
Return the [hinge loss](https://en.wikipedia.org/wiki/Hinge_loss) given the
prediction `` and true labels `y` (containing 1 or -1); calculated as
`sum(max.(0, 1 .- ŷ .* y)) / size(y, 2)`.
See also: [`squared_hinge`](@ref)
"""
hinge(, y) = sum(max.(0, 1 .- .* y)) * 1 // size(y, 2)
"""
squared_hinge(, y)
Return the squared hinge loss given the prediction `` and true labels `y`
(containing 1 or -1); calculated as `sum((max.(0, 1 .- ŷ .* y)).^2) / size(y, 2)`.
See also: [`hinge`](@ref)
"""
squared_hinge(, y) = sum((max.(0, 1 .- .* y)).^2) * 1 // size(y, 2)
"""
dice_coeff_loss(, y; smooth=1)
Return a loss based on the dice coefficient.
Used in the [V-Net](https://arxiv.org/pdf/1606.04797v1.pdf) image segmentation
architecture.
Similar to the F1_score. Calculated as:
1 - 2*sum(| .* y| + smooth) / (sum(.^2) + sum(y.^2) + smooth)`
"""
dice_coeff_loss(, y; smooth=eltype()(1.0)) = 1 - (2*sum(y .* ) + smooth) / (sum(y.^2) + sum(.^2) + smooth)
"""
tversky_loss(, y; β=0.7)
Return the [Tversky loss](https://arxiv.org/pdf/1706.05721.pdf).
Used with imbalanced data to give more weight to false negatives.
Larger β weigh recall higher than precision (by placing more emphasis on false negatives)
Calculated as:
1 - sum(|y .* | + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
"""
tversky_loss(, y; β=eltype()(0.7)) = 1 - (sum(y .* ) + 1) / (sum(y .* + β*(1 .- y) .* + (1 - β)*y .* (1 .- )) + 1)
"""
flatten(x::AbstractArray)
Transform (w, h, c, b)-shaped input into (w × h × c, b)-shaped output
by linearizing all values for each element in the batch.
"""
function flatten(x::AbstractArray)
return reshape(x, :, size(x)[end])
end
"""
xlogx(x)
Return `x * log(x)` for `x ≥ 0`, handling `x = 0` by taking the downward limit.
"""
function xlogx(x)
result = x * log(x)
ifelse(iszero(x), zero(result), result)
end
CuArrays.@cufunc function xlogx(x)
result = x * log(x)
ifelse(iszero(x), zero(result), result)
end
"""
xlogy(x, y)
Return `x * log(y)` for `y > 0` with correct limit at `x = 0`.
"""
function xlogy(x, y)
result = x * log(y)
ifelse(iszero(x), zero(result), result)
end
CuArrays.@cufunc function xlogy(x, y)
result = x * log(y)
ifelse(iszero(x), zero(result), result)
end
@adjoint function broadcasted(::typeof(xlogy), x::Zygote.Numeric, y::Zygote.Numeric)
res = xlogy.(x, y)
res, Δ -> (nothing, Zygote.unbroadcast(x, xlogy.(Δ, y)), Zygote.unbroadcast(y, Δ .* x ./ y))
end

View File

@ -9,8 +9,6 @@ Base.size(xs::OneHotVector) = (Int64(xs.of),)
Base.getindex(xs::OneHotVector, i::Integer) = i == xs.ix
Base.getindex(xs::OneHotVector, ::Colon) = OneHotVector(xs.ix, xs.of)
A::AbstractMatrix * b::OneHotVector = A[:, b.ix]
struct OneHotMatrix{A<:AbstractVector{OneHotVector}} <: AbstractMatrix{Bool}
@ -20,15 +18,11 @@ end
Base.size(xs::OneHotMatrix) = (Int64(xs.height),length(xs.data))
Base.getindex(xs::OneHotMatrix, i::Union{Integer, AbstractVector}, j::Integer) = xs.data[j][i]
Base.getindex(xs::OneHotMatrix, i::Integer, j::Integer) = xs.data[j][i]
Base.getindex(xs::OneHotMatrix, ::Colon, i::Integer) = xs.data[i]
Base.getindex(xs::OneHotMatrix, ::Colon, i::AbstractArray) = OneHotMatrix(xs.height, xs.data[i])
Base.getindex(xs::OneHotMatrix, ::Colon, ::Colon) = OneHotMatrix(xs.height, copy(xs.data))
Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data)
# remove workaround when https://github.com/JuliaGPU/CuArrays.jl/issues/676 is fixed
A::AbstractMatrix * B::OneHotMatrix = A[:, cpu(map(x->x.ix, B.data))]
A::AbstractMatrix * B::OneHotMatrix = A[:, map(x->x.ix, B.data)]
Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(length(x), [x, xs...])
@ -38,34 +32,13 @@ import Adapt: adapt, adapt_structure
adapt_structure(T, xs::OneHotMatrix) = OneHotMatrix(xs.height, adapt(T, xs.data))
import .CuArrays: CuArray, CuArrayStyle, cudaconvert
import Base.Broadcast: BroadcastStyle, ArrayStyle
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = CuArrayStyle{2}()
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
@init @require CuArrays="3a865a2d-5b23-5a0f-bc46-62713ec82fae" begin
import .CuArrays: CuArray, cudaconvert
import Base.Broadcast: BroadcastStyle, ArrayStyle
BroadcastStyle(::Type{<:OneHotMatrix{<:CuArray}}) = ArrayStyle{CuArray}()
cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.data))
end
"""
onehot(l, labels[, unk])
Create a `OneHotVector` with its `l`-th element `true` based on the
possible set of `labels`.
If `unk` is given, return `onehot(unk, labels)` if the input label `l` is not found
in `labels`; otherwise, it will raise an error.
# Examples
```jldoctest
julia> Flux.onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector:
0
1
0
julia> Flux.onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector:
0
0
1
```
"""
function onehot(l, labels)
i = something(findfirst(isequal(l), labels), 0)
i > 0 || error("Value $l is not in labels")
@ -78,48 +51,14 @@ function onehot(l, labels, unk)
OneHotVector(i, length(labels))
end
"""
onehotbatch(ls, labels[, unk...])
Create a `OneHotMatrix` with a batch of labels based on the
possible set of `labels`.
If `unk` is given, return [`onehot(unk, labels)`](@ref) if one of the input
labels `ls` is not found in `labels`; otherwise it will error.
# Examples
```jldoctest
julia> Flux.onehotbatch([:b, :a, :b], [:a, :b, :c])
3×3 Flux.OneHotMatrix{Array{Flux.OneHotVector,1}}:
0 1 0
1 0 1
0 0 0
```
"""
onehotbatch(ls, labels, unk...) =
OneHotMatrix(length(labels), [onehot(l, labels, unk...) for l in ls])
Base.argmax(xs::OneHotVector) = xs.ix
"""
onecold(y[, labels = 1:length(y)])
Inverse operations of [`onehot`](@ref).
# Examples
```jldoctest
julia> Flux.onecold([true, false, false], [:a, :b, :c])
:a
julia> Flux.onecold([0.3, 0.2, 0.5], [:a, :b, :c])
:c
```
"""
onecold(y::AbstractVector, labels = 1:length(y)) = labels[Base.argmax(y)]
onecold(y::AbstractMatrix, labels...) =
dropdims(mapslices(y -> onecold(y, labels...), y, dims=1), dims=1)
onecold(y::OneHotMatrix, labels...) =
mapreduce(x -> Flux.onecold(x, labels...), |, y.data, dims = 2, init = 0)
@nograd onecold, onehot, onehotbatch
# TODO probably still want this as a custom adjoint Zygote
# onecold(x::TrackedVector, l...) = onecold(data(x), l...)
# onecold(x::TrackedMatrix, l...) = onecold(data(x), l...)

View File

@ -1,14 +1,12 @@
module Optimise
using LinearAlgebra
export train!, update!,
Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,RADAM,
InvDecay, ExpDecay, WeightDecay, stop, Optimiser,
ClipValue, ClipNorm
export train!, step!,
SGD, Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,
InvDecay, ExpDecay, WeightDecay, stop, Optimiser
include("optimisers.jl")
include("update.jl")
include("train.jl")
end

View File

@ -1,34 +1,14 @@
using Flux
using Base: @get!
using MacroTools: @forward
const ϵ = 1e-8
# TODO: should use weak refs
"""
Descent(η = 0.1)
Descent(η)
Classic gradient descent optimiser with learning rate `η`.
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
# Examples
```julia
opt = Descent()
opt = Descent(0.3)
ps = params(model)
gs = gradient(ps) do
loss(x, y)
end
Flux.Optimise.update!(opt, ps, gs)
```
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`.
"""
mutable struct Descent
eta::Float64
@ -36,27 +16,14 @@ end
Descent() = Descent(0.1)
function apply!(o::Descent, x, Δ)
Δ .*= o.eta
function apply(o::Descent, x, , state = nothing)
.* o.eta, state
end
"""
Momentum(η = 0.01, ρ = 0.9)
Momentum(params, η = 0.01; ρ = 0.9)
Gradient descent optimizer with learning rate `η` and momentum `ρ`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
# Examples
```julia
opt = Momentum()
opt = Momentum(0.01, 0.99)
```
Gradient descent with learning rate `η` and momentum `ρ`.
"""
mutable struct Momentum
eta::Float64
@ -74,22 +41,9 @@ function apply!(o::Momentum, x, Δ)
end
"""
Nesterov(η = 0.001, ρ = 0.9)
Nesterov(eta, ρ = 0.9)
Gradient descent optimizer with learning rate `η` and Nesterov momentum `ρ`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Nesterov momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
# Examples
```julia
opt = Nesterov()
opt = Nesterov(0.003, 0.95)
```
Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
"""
mutable struct Nesterov
eta::Float64
@ -110,23 +64,9 @@ end
"""
RMSProp(η = 0.001, ρ = 0.9)
Optimizer using the
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
algorithm. Often a good choice for recurrent networks. Parameters other than learning rate
generally don't need tuning.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Momentum (`ρ`): Controls the acceleration of gradient descent in the
prominent direction, in effect dampening oscillations.
# Examples
```julia
opt = RMSProp()
opt = RMSProp(0.002, 0.95)
```
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
optimiser. Parameters other than learning rate don't need tuning. Often a good
choice for recurrent networks.
"""
mutable struct RMSProp
eta::Float64
@ -144,22 +84,9 @@ function apply!(o::RMSProp, x, Δ)
end
"""
ADAM(η = 0.001, β::Tuple = (0.9, 0.999))
ADAM(η = 0.001, β = (0.9, 0.999))
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = ADAM()
opt = ADAM(0.001, (0.9, 0.8))
```
"""
mutable struct ADAM
eta::Float64
@ -180,65 +107,10 @@ function apply!(o::ADAM, x, Δ)
end
"""
RADAM(η = 0.001, β::Tuple = (0.9, 0.999))
AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08)
[Rectified ADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimizer.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = RADAM()
opt = RADAM(0.001, (0.9, 0.8))
```
"""
mutable struct RADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict
end
RADAM(η = 0.001, β = (0.9, 0.999)) = RADAM(η, β, IdDict())
function apply!(o::RADAM, x, Δ)
η, β = o.eta, o.beta
ρ∞ = 2/(1-β[2])-1
mt, vt, βp, t = get!(o.state, x, (zero(x), zero(x), β, 1))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
ρ = ρ∞ - 2t*βp[2]/(1-βp[2])
if ρ > 4
r = sqrt((ρ-4)*(ρ-2)*ρ∞/((ρ∞-4)*(ρ∞-2)*ρ))
@. Δ = mt / (1 - βp[1]) / ((vt / (1 - βp[2])) + ϵ) * η * r
else
@. Δ = mt / (1 - βp[1]) * η
end
o.state[x] = (mt, vt, βp .* β, t+1)
return Δ
end
"""
AdaMax(η = 0.001, β::Tuple = (0.9, 0.999))
[AdaMax](https://arxiv.org/abs/1412.6980v9) is a variant of ADAM based on the -norm.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = AdaMax()
opt = AdaMax(0.001, (0.9, 0.995))
```
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on
the -norm.
"""
mutable struct AdaMax
eta::Float64
@ -259,22 +131,10 @@ function apply!(o::AdaMax, x, Δ)
end
"""
ADAGrad(η = 0.1)
ADAGrad(η = 0.1; ϵ = 1e-8)
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimizer. It has
parameter specific learning rates based on how frequently it is updated.
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
# Examples
```julia
opt = ADAGrad()
opt = ADAGrad(0.001)
```
"""
mutable struct ADAGrad
eta::Float64
@ -285,27 +145,16 @@ ADAGrad(η = 0.1) = ADAGrad(η, IdDict())
function apply!(o::ADAGrad, x, Δ)
η = o.eta
acc = get!(o.acc, x, fill!(zero(x), ϵ))::typeof(x)
acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(x)
@. acc += Δ^2
@. Δ *= η / (acc + ϵ)
end
"""
ADADelta(ρ = 0.9)
ADADelta(ρ = 0.9, ϵ = 1e-8)
[ADADelta](https://arxiv.org/abs/1212.5701) is a version of ADAGrad adapting its learning
rate based on a window of past gradient updates.
Parameters don't need tuning.
# Parameters
- Rho (`ρ`): Factor by which the gradient is decayed at each time step.
# Examples
```julia
opt = ADADelta()
opt = ADADelta(0.89)
```
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
tuning.
"""
mutable struct ADADelta
rho::Float64
@ -324,23 +173,10 @@ function apply!(o::ADADelta, x, Δ)
end
"""
AMSGrad(η = 0.001, β::Tuple = (0.9, 0.999))
AMSGrad(η = 0.001, β = (0.9, 0.999))
The [AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) version of the ADAM
optimiser. Parameters don't need tuning.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = AMSGrad()
opt = AMSGrad(0.001, (0.89, 0.995))
```
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need
tuning.
"""
mutable struct AMSGrad
eta::Float64
@ -352,31 +188,18 @@ AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict())
function apply!(o::AMSGrad, x, Δ)
η, β = o.eta, o.beta
mt, vt, v̂t = get!(o.state, x, (fill!(zero(x), ϵ), fill!(zero(x), ϵ), fill!(zero(x), ϵ)))
mt, vt, v̂t = get!(o.state, x, (fill(ϵ, size(x)), fill(ϵ, size(x)), fill(ϵ, size(x))))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ ^ 2
@. v̂t = max(v̂t, vt)
@. v̂t = max.(v̂t, vt)
@. Δ = η * mt / (v̂t + ϵ)
end
"""
NADAM(η = 0.001, β::Tuple = (0.9, 0.999))
NADAM(η = 0.001, β = (0.9, 0.999))
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) is a Nesterov variant of ADAM.
Parameters don't need tuning.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
# Examples
```julia
opt = NADAM()
opt = NADAM(0.002, (0.89, 0.995))
```
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser. Parameters don't need
tuning.
"""
mutable struct NADAM
eta::Float64
@ -388,7 +211,8 @@ NADAM(η = 0.001, β = (0.9, 0.999)) = NADAM(η, β, IdDict())
function apply!(o::NADAM, x, Δ)
η, β = o.eta, o.beta
mt, vt, (β1p, β2p) = get!(o.state, x, (zero(x), zero(x), o.beta))
β1p, β2p = o.beta
mt, vt = get!(o.state, x, (zero(x), zero(x)))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
@. Δ = (β[1] * mt / (1 - β[1] * β1p) + (1 - β[1]) * Δ / (1 - β1p)) / ((vt * β[2] / (1 - β2p)) + ϵ) * η
@ -397,24 +221,9 @@ function apply!(o::NADAM, x, Δ)
end
"""
ADAMW(η = 0.001, β::Tuple = (0.9, 0.999), decay = 0)
ADAMW((η = 0.001, β = (0.9, 0.999), decay = 0)
[ADAMW](https://arxiv.org/abs/1711.05101) is a variant of ADAM fixing (as in repairing) its
weight decay regularization.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- Decay of momentums (`β::Tuple`): Exponential decay for the first (β1) and the
second (β2) momentum estimate.
- `decay`: Decay applied to weights during optimisation.
# Examples
```julia
opt = ADAMW()
opt = ADAMW(0.001, (0.89, 0.995), 0.1)
```
[ADAMW](https://arxiv.org/abs/1711.05101) fixing weight decay regularization in Adam.
"""
ADAMW(η = 0.001, β = (0.9, 0.999), decay = 0) =
Optimiser(ADAM(η, β), WeightDecay(decay))
@ -447,15 +256,11 @@ function apply!(o::Optimiser, x, Δ)
end
"""
InvDecay(γ = 0.001)
`InvDecay(γ)`
Apply inverse time decay to an optimiser, so that the effective step size at
iteration `n` is `eta / (1 + γ * n)` where `eta` is the initial step size.
The wrapped optimiser's step size is not modified.
# Examples
Apply inverse time decay to an optimiser
```julia
Optimiser(InvDecay(..), Opt(..))
Optimiser(InvDecay(..), Opt(..))
```
"""
mutable struct InvDecay
@ -474,25 +279,13 @@ function apply!(o::InvDecay, x, Δ)
end
"""
ExpDecay(η = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4)
`ExpDecay(eta, decay, decay_step, clip)`
Discount the learning rate `η` by the factor `decay` every `decay_step` steps till
a minimum of `clip`.
Schedule the learning rate `eta` by `decay` every `decay_step` till a minimum of `clip`.
# Parameters
- Learning rate (`η`): Amount by which gradients are discounted before updating
the weights.
- `decay`: Factor by which the learning rate is discounted.
- `decay_step`: Schedule decay operations by setting the number of steps between
two decay operations.
- `clip`: Minimum value of learning rate.
# Examples
To apply exponential decay to an optimiser:
```julia
Optimiser(ExpDecay(..), Opt(..))
opt = Optimiser(ExpDecay(), ADAM())
Optimiser(ExpDecay(..), Opt(..))
```
"""
mutable struct ExpDecay
@ -509,19 +302,16 @@ function apply!(o::ExpDecay, x, Δ)
η, s, decay = o.eta, o.step, o.decay
n = o.current[x] = get(o.current, x, 0) + 1
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
η = max(η * decay, o.clip)
η = max(η * decay^(s / n), o.clip)
o.eta = η
end
@. Δ *= η
@. Δ *= decay
end
"""
WeightDecay(wd = 0)
`WeightDecay(wd)`
Decay weights by `wd`.
# Parameters
- Weight decay (`wd`)
Decay the weight parameter by `wd`
"""
mutable struct WeightDecay
wd::Real
@ -533,31 +323,3 @@ function apply!(o::WeightDecay, x, Δ)
wd = o.wd
@. Δ += wd * x
end
"""
ClipValue(thresh)
Clip gradients when their absolute value exceeds `thresh`.
"""
mutable struct ClipValue{T}
thresh::T
end
apply!(o::ClipValue, x, Δ) = clamp!(Δ, -o.thresh, o.thresh)
"""
ClipNorm(thresh)
Clip gradients when their L2 norm exceeds `thresh`.
"""
mutable struct ClipNorm{T}
thresh::T
end
function apply!(o::ClipNorm, x, Δ)
Δnrm = norm(Δ)
if Δnrm > o.thresh
rmul!(Δ, o.thresh / Δnrm)
end
return Δ
end

View File

@ -1,36 +1,25 @@
using Juno
import Zygote: Params, gradient
import Zygote: Context, Params, _forward, gradient
# Training step
"""
update!(x, )
Update the array `x` according to `x .-= x̄`.
"""
function update!(x::AbstractArray, )
x .-=
function losscheck(x)
x isa Real || error("Function output is not scalar")
isinf(x) && error("Loss is infinite")
isnan(x) && error("Loss is NaN")
end
"""
update!(opt, p, g)
update!(opt, ps::Params, gs)
Perform an update step of the parameters `ps` (or the single parameter `p`)
according to optimizer `opt` and the gradients `gs` (the gradient `g`).
As a result, the parameters are mutated and the optimizer's internal state may change.
"""
function update!(opt, x, )
x .-= apply!(opt, x, )
function step!(f, opt, x...)
cx = Context()
y, ∂f = _forward(cx, f, x...)
losscheck(y)
= ∂f(1)[1] # TODO update f
= Globals(cx)
update!(opt, nothing, )
return y
end
function update!(opt, xs::Params, gs)
for x in xs
gs[x] == nothing && continue
update!(opt, x, gs[x])
end
end
# Training loop
# Callback niceties
call(f, xs...) = f(xs...)
@ -38,15 +27,15 @@ runall(f) = f
runall(fs::AbstractVector) = () -> foreach(call, fs)
struct StopException <: Exception end
"""
stop()
Call `Flux.stop()` in a callback to indicate when a callback condition is met.
This will trigger the train loop to stop and exit.
This would trigger the train loop to stop and exit.
# Examples
```julia
# Example callback:
cb = function ()
accuracy() > 0.9 && Flux.stop()
end
@ -59,18 +48,18 @@ end
"""
train!(loss, params, data, opt; cb)
For each datapoint `d` in `data` compute the gradient of `loss(d...)` through
backpropagation and call the optimizer `opt`.
For each datapoint `d` in `data` computes the gradient of `loss(d...)` through
backpropagation and calls the optimizer `opt`.
In case datapoints `d` are of numeric array type, assume no splatting is needed
and compute the gradient of `loss(d)`.
Takes a callback as keyword argument `cb`. For example, this will print "training"
every 10 seconds:
A callback is given with the keyword argument `cb`. For example, this will print
"training" every 10 seconds (using [`Flux.throttle`](@ref)):
```julia
Flux.train!(loss, params, data, opt,
cb = throttle(() -> println("training"), 10))
```
train!(loss, params, data, opt, cb = throttle(() -> println("training"), 10))
The callback can call [`Flux.stop`](@ref) to interrupt the training loop.
The callback can call `Flux.stop()` to interrupt the training loop.
Multiple optimisers and callbacks can be passed to `opt` and `cb` as arrays.
"""
@ -79,17 +68,10 @@ function train!(loss, ps, data, opt; cb = () -> ())
cb = runall(cb)
@progress for d in data
try
if d isa AbstractArray{<:Number}
gs = gradient(ps) do
loss(d)
end
else
gs = gradient(ps) do
loss(d...)
end
gs = gradient(ps) do
loss(d...)
end
update!(opt, ps, gs)
cb()
catch ex
if ex isa StopException
break
@ -106,12 +88,11 @@ end
Run `body` `N` times. Mainly useful for quickly doing multiple epochs of
training in a REPL.
# Examples
```jldoctest
julia> Flux.@epochs 2 println("hello")
[ Info: Epoch 1
```julia
julia> @epochs 2 println("hello")
INFO: Epoch 1
hello
[ Info: Epoch 2
INFO: Epoch 2
hello
```
"""

71
src/optimise/update.jl Normal file
View File

@ -0,0 +1,71 @@
using Zygote: Context, globals
const Param{T<:Number} = Union{AbstractArray{T},T}
struct Globals{T}
gs::T
end
Globals(cx::Context) = Globals(globals(cx))
_apply(opt, x, , state) = apply(opt, x, , state)
_apply(opt, x, , ::Nothing) = apply(opt, x, )
# Immutable updates
function update(opt, x::Param, ::Param, state = nothing)
Δ, state = _apply(opt, x, , state)
return x .- Δ, state
end
# Mutable updates
# Figure out if we can do in-place
inplace(x, y) = false
inplace(x, y::Nothing) = true
inplace(x::AbstractArray, ::AbstractArray) = true
inplace(x, ::NamedTuple) = all(inplace(getfield(x, f), getfield(, f)) for f in fieldnames(typeof()))
function update!(opt, x::AbstractArray{<:Number}, ::AbstractArray, state = nothing)
Δ, state = _apply(opt, x, , state)
x .-= Δ
return state
end
function update!(opt, x, ::NamedTuple)
for f in fieldnames(typeof())
= getfield(, f)
=== nothing || update!(opt, getfield(x, f), )
end
end
setglobal!(mod::Module, name::Symbol, x) =
ccall(:jl_set_global, Cvoid, (Any, Any, Any), mod, name, x)
function update!(opt, ::Nothing, gs::Globals)
for (id, ) in gs.gs
x = getfield(id.mod, id.name)
if inplace(x, )
update!(opt, x, )
else
if isconst(id.mod, id.name)
id.mod == Main && error("Can't update constant $id")
else
x, state = update(opt, x, )
setglobal!(id.mod, id.name, x)
end
end
end
end
# Package Integration
using Requires
@init @require Colors="5ae59095-9a9b-59fe-a467-6f913c188581" begin
function update(opt, x::Colors.RGB{T}, ::NamedTuple) where T
Colors.RGB{T}(clamp(update(opt, x.r, .r)[1], 0, 1),
clamp(update(opt, x.g, .g)[1], 0, 1),
clamp(update(opt, x.b, .b)[1], 0, 1)), nothing
end
end

85
src/treelike.jl Normal file
View File

@ -0,0 +1,85 @@
import Adapt: adapt, adapt_storage
import Zygote: IdSet
children(x) = ()
mapchildren(f, x) = x
children(x::Tuple) = x
children(x::NamedTuple) = x
mapchildren(f, x::Tuple) = map(f, x)
mapchildren(f, x::NamedTuple) = map(f, x)
function treelike(m::Module, T, fs = fieldnames(T))
@eval m begin
Flux.children(x::$T) = ($([:(x.$f) for f in fs]...),)
Flux.mapchildren(f, x::$T) = $T(f.($children(x))...)
end
end
macro treelike(T, fs = nothing)
fs == nothing || isexpr(fs, :tuple) || error("@treelike T (a, b)")
fs = fs == nothing ? [] : [:($(map(QuoteNode, fs.args)...),)]
:(treelike(@__MODULE__, $(esc(T)), $(fs...)))
end
isleaf(x) = isempty(children(x))
function mapleaves(f, x; cache = IdDict())
haskey(cache, x) && return cache[x]
cache[x] = isleaf(x) ? f(x) : mapchildren(x -> mapleaves(f, x, cache = cache), x)
end
function prefor(f, x; seen = IdSet())
x seen && return
f(x)
foreach(x -> prefor(f, x, seen = seen), children(x))
return
end
function params(m)
ps = Params()
prefor(p ->
p isa AbstractArray{<:Real} &&
!any(p -> p === p, ps) && push!(ps, p),
m)
return ps
end
params(m...) = params(m)
function loadparams!(m, xs)
for (p, x) in zip(params(m), xs)
size(p) == size(x) ||
error("Expected param size $(size(p)), got $(size(x))")
copyto!(p, x)
end
end
# CPU/GPU movement conveniences
cpu(m) = mapleaves(x -> adapt(Array, x), m)
gpu_adaptor = identity
@init @require CuArrays="3a865a2d-5b23-5a0f-bc46-62713ec82fae" begin
global gpu_adaptor = CuArrays.cu
end
gpu(x) = mapleaves(gpu_adaptor, x)
# Precision
adapt_storage(T::Type{<:Real}, xs::AbstractArray{<:Real}) = convert.(T, xs)
paramtype(T::Type{<:Real}, m) = mapleaves(x -> adapt(T, x), m)
f32(m) = paramtype(Float32, m)
f64(m) = paramtype(Float64, m)
# General parameter map
function mapparams(f, m)
mapleaves(m) do x
x isa Union{AbstractArray,Number} ? f(x) : x
end
end

View File

@ -1,41 +1,6 @@
# Arrays
nfan() = 1, 1 # fan_in, fan_out
nfan(n) = 1, n # A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out # In case of Dense kernels: arranged as matrices
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) # In case of convolution kernels
"""
glorot_uniform(dims...)
Return an `Array` of size `dims` containing random variables taken from a uniform
distribution in the interval ``[-x, x]``, where `x = sqrt(24 / sum(dims)) / 2`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_uniform(2, 3)
2×3 Array{Float32,2}:
0.601094 -0.57414 -0.814925
0.900868 0.805994 0.057514
```
"""
glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...)))
"""
glorot_normal(dims...)
Return an `Array` of size `dims` containing random variables taken from a normal
distribution with mean 0 and standard deviation `sqrt(2 / sum(dims))`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_normal(3, 2)
3×2 Array{Float32,2}:
0.429505 -0.0852891
0.523935 0.371009
-0.223261 0.188052
```
"""
glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...)))
glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0/sum(dims))
glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0/sum(dims))
ones(T::Type, dims...) = Base.ones(T, dims...)
zeros(T::Type, dims...) = Base.zeros(T, dims...)
@ -43,81 +8,9 @@ zeros(T::Type, dims...) = Base.zeros(T, dims...)
ones(dims...) = Base.ones(Float32, dims...)
zeros(dims...) = Base.zeros(Float32, dims...)
"""
unsqueeze(xs, dim)
Return `xs` reshaped into an `Array` one dimensionality higher than `xs`,
where `dim` indicates in which dimension `xs` is extended.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.unsqueeze(xs, 1)
1×3 Array{Array{Int64,1},2}:
[1, 2] [3, 4] [5, 6]
julia> Flux.unsqueeze([1 2; 3 4], 2)
2×1×2 Array{Int64,3}:
[:, :, 1] =
1
3
[:, :, 2] =
2
4
```
"""
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
"""
stack(xs, dim)
Concatenate the given `Array` of `Array`s `xs` into a single `Array` along the
given dimension `dim`.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.stack(xs, 1)
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> cat(xs, dims=1)
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
```
"""
stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim)
"""
unstack(xs, dim)
Unroll the given `xs` into an `Array` of `Array`s along the given dimension `dim`.
# Examples
```jldoctest
julia> Flux.unstack([1 3 5 7; 2 4 6 8], 2)
4-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
[7, 8]
```
"""
unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
"""
@ -125,16 +18,9 @@ unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
Split `xs` into `n` parts.
# Examples
```jldoctest
julia> Flux.chunk(1:10, 3)
3-element Array{UnitRange{Int64},1}:
1:4
5:8
9:10
julia> Flux.chunk(collect(1:10), 3)
3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:
```julia
julia> chunk(1:10, 3)
3-element Array{Array{Int64,1},1}:
[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10]
@ -149,12 +35,11 @@ batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i)
Count the number of times that each element of `xs` appears.
# Examples
```jldoctest
julia> Flux.frequencies(['a','b','b'])
```julia
julia> frequencies(['a','b','b'])
Dict{Char,Int64} with 2 entries:
'a' => 1
'b' => 2
'a' => 1
```
"""
function frequencies(xs)
@ -170,13 +55,12 @@ head(x::Tuple) = reverse(Base.tail(reverse(x)))
squeezebatch(x) = reshape(x, head(size(x)))
"""
batch(xs)
batch(xs)
Batch the arrays in `xs` into a single array.
# Examples
```jldoctest
julia> Flux.batch([[1,2,3],[4,5,6]])
```julia
julia> batch([[1,2,3],[4,5,6]])
3×2 Array{Int64,2}:
1 4
2 5
@ -193,25 +77,6 @@ function batch(xs)
return data
end
"""
Return the given sequence padded with `p` up to a maximum length of `n`.
# Examples
```jldoctest
julia> rpad([1, 2], 4, 0)
4-element Array{Int64,1}:
1
2
0
0
julia> rpad([1, 2, 3], 2, 0)
3-element Array{Int64,1}:
1
2
3
```
"""
Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))]
"""
@ -220,9 +85,8 @@ Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))
Take a list of `N` sequences, and turn them into a single sequence where each
item is a batch of `N`. Short sequences will be padded by `pad`.
# Examples
```jldoctest
julia> Flux.batchseq([[1, 2, 3], [4, 5]], 0)
```julia
julia> batchseq([[1, 2, 3], [4, 5]], 0)
3-element Array{Array{Int64,1},1}:
[1, 4]
[2, 5]
@ -234,64 +98,14 @@ function batchseq(xs, pad = nothing, n = maximum(length(x) for x in xs))
[batch([xs_[j][i] for j = 1:length(xs_)]) for i = 1:n]
end
# Flattening models to weight vectors, and back
function _restructure(m, xs)
i = 0
fmap(m) do x
x isa AbstractArray || return x
x = reshape(xs[i.+(1:length(x))], size(x))
i += length(x)
return x
end
end
@adjoint function _restructure(m, xs)
_restructure(m, xs), dm -> (nothing,destructure(dm)[1])
end
"""
destructure(m)
Flatten a model's parameters into a single weight vector.
julia> m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
julia> θ, re = destructure(m);
julia> θ
67-element Array{Float32,1}:
-0.1407104
...
The second return value `re` allows you to reconstruct the original network after making
modifications to the weight vector (for example, with a hypernetwork).
julia> re(θ .* 2)
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
"""
function destructure(m)
xs = Zygote.Buffer([])
fmap(m) do x
x isa AbstractArray && push!(xs, x)
return x
end
return vcat(vec.(copy(xs))...), p -> _restructure(m, p)
end
# Other
"""
throttle(f, timeout; leading=true, trailing=false)
Return a function that when invoked, will only be triggered at most once
during `timeout` seconds.
Normally, the throttled function will run as much as it can, without ever
going more than once per `wait` duration; but if you'd like to disable the
execution on the leading edge, pass `leading=false`. To enable execution on
the trailing edge, pass `trailing=true`.
Returns a function that when invoked, will only be triggered at most once
during `timeout` seconds. Normally, the throttled function will run
as much as it can, without ever going more than once per `wait` duration;
but if you'd like to disable the execution on the leading edge, pass
`leading=false`. To enable execution on the trailing edge, ditto.
"""
function throttle(f, timeout; leading=true, trailing=false)
cooldown = true

View File

@ -1,106 +0,0 @@
import Base: +, -, *, reshape, size
import Base.Broadcast: broadcasted, Broadcasted, BroadcastStyle
"""
Zeros()
Zeros(size...)
Zeros(Type, size...)
Acts as a stand-in for an array of zeros that can be
used during training which is ignored by the optimisers.
Useful to turn bias off for a forward pass of a layer.
## Examples
```julia
julia> Flux.Zeros(3,3)
3×3 Flux.Zeros{Bool,2}:
false false false
false false false
false false false
julia> Flux.Zeros(Float32, 3,3)
3×3 Flux.Zeros{Float32,2}:
0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0
julia> rand(3,3) .+ Flux.Zeros()
3×3 Array{Float64,2}:
0.198739 0.490459 0.785386
0.779074 0.39986 0.66383
0.854981 0.447292 0.314497
julia> bias_less_conv = Conv((2,2), 1=>3, bias = Flux.Zeros())
Conv((2, 2), 1=>3)
```
"""
struct Zeros{T,N} <: AbstractArray{T,N}
size::Tuple
end
Zeros(::Type{T}, sz...) where T = Zeros{T,length(sz)}(sz)
Zeros(sz::Integer...) = Zeros(Bool, sz...)
Base.size(xs::Zeros) = xs.size
Base.axes(xs::Zeros) = Base.OneTo.(size(xs))
Base.IndexStyle(::Type{<:Zeros}) = IndexLinear()
Base.getindex(xs::Zeros{T,N}, I::Int) where {T,N} = zero(T)
Base.getindex(xs::Zeros{T,N}, inds::Union{Base.OneTo, Base.UnitRange}) where {T,N} =
Zeros(T, length(inds))
Base.collect(xs::Zeros{T,N}) where {T,N} = fill(zero(T), size(xs))
@adjoint reshape(xs::Zeros{T}, dims...) where T =
reshape(xs, dims...), _ -> nothing
# Define basic ops
for f in (:+, :-)
@eval @inline function $f(a::Union{AbstractArray{<:Number}, Zeros}, b::Zeros)
@assert size(a) == size(b) throw(DimensionMismatch("dimensions must match"))
a
end
end
+(a::Zeros, b::AbstractArray) = b + a
-(a::Zeros, b::AbstractArray) = -b + a
Base.copy(xs::Zeros{T,N}) where {T,N} = xs
# Define broadcasting behaviour
for op in (:+, :-)
@eval function broadcasted(::typeof($op), a::AbstractArray, b::Zeros)
bs = Broadcast.broadcast_shape(size(a), size(b))
size(a) == bs && return a
sz = similar(a, bs)
sz .= a
end
end
broadcasted(::typeof(+), a::Zeros, b::AbstractArray) = broadcasted(+, b, a)
broadcasted(::typeof(-), a::Zeros, b::AbstractArray) = broadcasted(+, -b, a)
function broadcasted(::typeof(*), a::AbstractArray, b::Zeros)
Zeros(Broadcast.broadcast_shape(size(a), size(b))...)
end
broadcasted(::typeof(*), a::Zeros, b::AbstractArray) = broadcasted(*, b, a)
for op in (:+, :-, :*)
@eval broadcasted(::typeof($op), a::Zeros, b::Zeros) = Zeros(Broadcast.broadcast_shape(size(a), size(b))...)
end
# Some opportunities to avoid scalar indexing, intermediaries
# Since it replicates a little of what we expect Base to do,
# it should be possible to remove in the future, but for now,
# these help with performance.
broadcasted(::typeof(+), a::AbstractArray, b::Zeros{T,0}) where T = a
broadcasted(::typeof(+), a::Zeros{T,0}, b::AbstractArray) where T = b
broadcasted(::typeof(-), a::AbstractArray, b::Zeros{T,0}) where T = a
broadcasted(::typeof(-), a::Zeros{T,0}, b::AbstractArray) where T = -b
broadcasted(::typeof(*), a::AbstractArray, b::Zeros{T,0}) where T = zero(a)
broadcasted(::typeof(*), a::Zeros{T,0}, b::AbstractArray) where T = zero(b)
broadcasted(::typeof(/), a::Zeros{T,0}, b::AbstractArray) where T = zero(b)

View File

@ -1,5 +1,4 @@
using Flux, Test
using Flux.CuArrays
using Flux, CuArrays, Test
using Flux: gpu
@info "Testing GPU Support"
@ -8,11 +7,11 @@ using Flux: gpu
CuArrays.allowscalar(false)
x = randn(5, 5)
x = param(randn(5, 5))
cx = gpu(x)
@test cx isa CuArray
@test cx isa TrackedArray && cx.data isa CuArray
@test Flux.onecold(gpu([1.0, 2.0, 3.0])) == 3
@test Flux.onecold(param(gpu([1.,2.,3.]))) == 3
x = Flux.onehotbatch([1, 2, 3], 1:3)
cx = gpu(x)
@ -22,54 +21,25 @@ cx = gpu(x)
m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax)
cm = gpu(m)
@test all(p isa CuArray for p in params(cm))
@test cm(gpu(rand(10, 10))) isa CuArray{Float32,2}
@test all(p isa TrackedArray && p.data isa CuArray for p in params(cm))
@test cm(gpu(rand(10, 10))) isa TrackedArray{Float32,2,CuArray{Float32,2}}
x = [1.,2.,3.]
x = [1,2,3]
cx = gpu(x)
@test Flux.crossentropy(x,x) Flux.crossentropy(cx,cx)
@test Flux.crossentropy(x,x, weight=1.0) Flux.crossentropy(cx,cx, weight=1.0)
@test Flux.crossentropy(x,x, weight=[1.0;2.0;3.0]) Flux.crossentropy(cx,cx, weight=cu([1.0;2.0;3.0]))
x = [-1.1491, 0.8619, 0.3127]
y = [1, 1, 0.]
@test Flux.binarycrossentropy.(σ.(x),y) Array(Flux.binarycrossentropy.(cu(σ.(x)),cu(y)))
@test Flux.logitbinarycrossentropy.(x,y) Array(Flux.logitbinarycrossentropy.(cu(x),cu(y)))
xs = rand(5, 5)
xs = param(rand(5,5))
ys = Flux.onehotbatch(1:5,1:5)
@test collect(cu(xs) .+ cu(ys)) collect(xs .+ ys)
c = gpu(Conv((2,2),3=>4))
x = gpu(rand(10, 10, 3, 2))
l = c(gpu(rand(10,10,3,2)))
@test gradient(x -> sum(c(x)), x)[1] isa CuArray
c = gpu(CrossCor((2,2),3=>4))
x = gpu(rand(10, 10, 3, 2))
l = c(gpu(rand(10,10,3,2)))
@test gradient(x -> sum(c(x)), x)[1] isa CuArray
Flux.back!(sum(l))
end
@testset "onecold gpu" begin
y = Flux.onehotbatch(ones(3), 1:10) |> gpu;
@test Flux.onecold(y) isa CuArray
@test y[3,:] isa CuArray
end
@testset "restructure gpu" begin
dudt = Dense(1,1) |> gpu
p,re = Flux.destructure(dudt)
foo(x) = sum(re(p)(x))
@test gradient(foo, cu(rand(1)))[1] isa CuArray
end
if CuArrays.has_cudnn()
@info "Testing Flux/CUDNN"
include("cudnn.jl")
include("curnn.jl")
include("layers.jl")
else
@warn "CUDNN unavailable, not testing GPU DNN support"
if CuArrays.libcudnn != nothing
@info "Testing Flux/CUDNN"
include("cudnn.jl")
include("curnn.jl")
end

View File

@ -1,44 +1,47 @@
using Flux, CuArrays, Test
using Flux: pullback
@testset "CUDNN BatchNorm" begin
@testset "4D Input" begin
x = Float64.(collect(reshape(1:12, 2, 2, 3, 1)))
x = TrackedArray(Float64.(collect(reshape(1:12, 2, 2, 3, 1))))
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
y, back = pullback((m, x) -> m(x), m, x)
cy, cback = pullback((m, x) -> m(x), cm, cx)
y = m(x)
cy = cm(cx)
@test cpu(cy) y
@test cy isa TrackedArray{Float32,4,CuArray{Float32,4}}
Δ = randn(size(y))
dm, dx = back(Δ)
cdm, cdx = cback(gpu(Δ))
@test cpu(data(cy)) data(y)
@test dm[].γ cpu(cdm[].γ)
@test dm[].β cpu(cdm[].β)
@test dx cpu(cdx)
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
@testset "2D Input" begin
x = Float64.(collect(reshape(1:12, 3, 4)))
x = TrackedArray(Float64.(collect(reshape(1:12, 3, 4))))
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
y, back = pullback((m, x) -> m(x), m, x)
cy, cback = pullback((m, x) -> m(x), cm, cx)
y = m(x)
cy = cm(cx)
@test cpu(cy) y
@test cy isa TrackedArray{Float32,2,CuArray{Float32,2}}
Δ = randn(size(y))
dm, dx = back(Δ)
cdm, cdx = cback(gpu(Δ))
@test cpu(data(cy)) data(y)
@test dm[].γ cpu(cdm[].γ)
@test dm[].β cpu(cdm[].β)
@test dx cpu(cdx)
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
end

View File

@ -1,63 +1,46 @@
using Flux, CuArrays, Test
using Flux: pullback
@testset for R in [RNN, GRU, LSTM]
m = R(10, 5) |> gpu
x = gpu(rand(10))
(,) = gradient(m -> sum(m(x)), m)
Flux.reset!(m)
θ = gradient(() -> sum(m(x)), params(m))
@test collect([].cell[].Wi) == collect(θ[m.cell.Wi])
end
@testset "RNN" begin
@testset for R in [RNN, GRU, LSTM], batch_size in (1, 5)
@testset for R in [RNN, GRU, LSTM]
rnn = R(10, 5)
curnn = fmap(gpu, rnn)
curnn = mapleaves(gpu, rnn)
@testset for batch_size in (1, 5)
Flux.reset!(rnn)
Flux.reset!(curnn)
x = batch_size == 1 ?
param(rand(10)) :
param(rand(10,batch_size))
cux = gpu(x)
y = (rnn(x); rnn(x))
cuy = (curnn(cux); curnn(cux))
Flux.reset!(rnn)
Flux.reset!(curnn)
x = batch_size == 1 ?
rand(10) :
rand(10, batch_size)
cux = gpu(x)
@test y.data collect(cuy.data)
@test haskey(Flux.CUDA.descs, curnn.cell)
y, back = pullback((r, x) -> r(x), rnn, x)
cuy, cuback = pullback((r, x) -> r(x), curnn, cux)
Δ = randn(size(y))
@test y collect(cuy)
@test haskey(Flux.CUDA.descs, curnn.cell)
Flux.back!(y, Δ)
Flux.back!(cuy, gpu(Δ))
= randn(size(y))
, = back()
cum̄, cux̄ = cuback(gpu())
[].cell[].Wi
[].state
cum̄[].state
@test collect(cux̄)
@test [].cell[].Wi collect(cum̄[].cell[].Wi)
@test [].cell[].Wh collect(cum̄[].cell[].Wh)
@test [].cell[].b collect(cum̄[].cell[].b)
if [].state isa Tuple
for (x, cx) in zip([].state, cum̄[].state)
@test x collect(cx)
@test x.grad collect(cux.grad)
@test rnn.cell.Wi.grad collect(curnn.cell.Wi.grad)
@test rnn.cell.Wh.grad collect(curnn.cell.Wh.grad)
@test rnn.cell.b.grad collect(curnn.cell.b.grad)
@test rnn.cell.h.grad collect(curnn.cell.h.grad)
if isdefined(rnn.cell, :c)
@test rnn.cell.c.grad collect(curnn.cell.c.grad)
end
else
@test [].state collect(cum̄[].state)
Flux.reset!(rnn)
Flux.reset!(curnn)
ohx = batch_size == 1 ?
Flux.onehot(rand(1:10), 1:10) :
Flux.onehotbatch(rand(1:10, batch_size), 1:10)
cuohx = gpu(ohx)
y = (rnn(ohx); rnn(ohx))
cuy = (curnn(cuohx); curnn(cuohx))
@test y.data collect(cuy.data)
end
Flux.reset!(rnn)
Flux.reset!(curnn)
ohx = batch_size == 1 ?
Flux.onehot(rand(1:10), 1:10) :
Flux.onehotbatch(rand(1:10, batch_size), 1:10)
cuohx = gpu(ohx)
y = (rnn(ohx); rnn(ohx))
cuy = (curnn(cuohx); curnn(cuohx))
@test y collect(cuy)
end
end

View File

@ -1,98 +0,0 @@
# Test layers and data/model movements on and off the GPU
# Add tests for layers and their gradients on the GPU
# Most of the forward passes should be fine being applied
# to bitstype objects, but this gives higher coverage for our use-cases
# Check that getting the gradients does not throw
# generic movement tests
@testset "Basic GPU Movement" begin
@test gradient(x -> sum(gpu(x)), rand(3,3)) isa Tuple
@test gradient(x -> sum(cpu(x)), gpu(rand(3,3))) isa Tuple
end
# TODO: These layers get into scalar indexing
# `AlphaDropout` throws a compilation error on GPUs,
# whereas, the rest are scalar indexing issues.
const BROKEN_LAYERS = [DepthwiseConv,
AlphaDropout,
InstanceNorm,
GroupNorm]
function gradtest(name::String, layers::Vector, xs = nothing, args...)
isnothing(xs) && error("Missing input to test the layers against.")
@testset "$name GPU grad tests" begin
for layer in layers
@testset "$layer GPU grad test" begin
l = gpu(layer(args...))
xs = gpu(xs)
if any(x -> isa(l, x), BROKEN_LAYERS)
ps = Flux.params(l)
@test_broken gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
else
ps = Flux.params(l)
@test gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
gs = gradient(() -> sum(l(xs)), ps)
# Handle pooling layers
if !isempty(ps)
@test gs[first(ps)] isa Flux.CuArrays.CuArray
end
end
end
end
end
end
# Repeats from Conv, CrossCor
r = rand(Float32, 28, 28, 1, 1)
conv_layers = [Conv, ConvTranspose, CrossCor, DepthwiseConv]
gradtest("Conv", conv_layers, r, (2,2), 1=>3)
pooling_layers = [MaxPool, MeanPool]
gradtest("Pooling", pooling_layers, r, (2,2))
dropout_layers = [Dropout, AlphaDropout]
gradtest("Dropout", dropout_layers, r, 0.5f0)
norm_layers = [LayerNorm, BatchNorm]
gradtest("Normalising", norm_layers, rand(Float32, 28,28,3,1), 1)
instancenorm = [InstanceNorm]
gradtest("InstanceNorm", instancenorm, r, 1)
groupnorm = [GroupNorm]
gradtest("GroupNorm", groupnorm, rand(Float32, 28,28,3,1), 3, 1)
const stateless_layers = [Flux.mse,
Flux.crossentropy,
Flux.logitcrossentropy,
Flux.normalise]
const stateless_layers_broadcasted = [Flux.binarycrossentropy,
Flux.logitbinarycrossentropy]
function stateless_gradtest(f, args...)
@test gradient((args...) -> sum(f(args...)), args...)[1] isa CuArray
end
function stateless_gradtest_broadcasted(f, args...)
@test gradient((args...) -> sum(f.(args...)), args...)[1] isa CuArray
end
@testset "Stateless GPU grad tests" begin
x = gpu(rand(3,3))
y = gpu(rand(3,3))
for layer in stateless_layers
if layer == Flux.normalise
stateless_gradtest(layer, x)
else
stateless_gradtest(layer, x, y)
end
end
for layer in stateless_layers_broadcasted
stateless_gradtest_broadcasted(layer, x, y)
end
end

View File

@ -1,116 +1,16 @@
@testset "DataLoader" begin
X = reshape([1:10;], (2, 5))
Y = [1:5;]
using Flux.Data
using Test
d = DataLoader(X, batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 3
@test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4]
@test batches[3] == X[:,5:5]
@test cmudict()["CATASTROPHE"] == :[K,AH0,T,AE1,S,T,R,AH0,F,IY0].args
d = DataLoader(X, batchsize=2, partial=false)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 2
@test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4]
@test length(CMUDict.phones()) == 39
d = DataLoader((X,), batchsize=2, partial=false)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X)}
@test length(batches) == 2
@test batches[1] == (X[:,1:2],)
@test batches[2] == (X[:,3:4],)
@test length(CMUDict.symbols()) == 84
d = DataLoader((X, Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X), typeof(Y)}
@test length(batches) == 3
@test length(batches[1]) == 2
@test length(batches[2]) == 2
@test length(batches[3]) == 2
@test batches[1][1] == X[:,1:2]
@test batches[1][2] == Y[1:2]
@test batches[2][1] == X[:,3:4]
@test batches[2][2] == Y[3:4]
@test batches[3][1] == X[:,5:5]
@test batches[3][2] == Y[5:5]
@test MNIST.images()[1] isa Matrix
@test MNIST.labels() isa Vector{Int64}
# test with NamedTuple
d = DataLoader((x=X, y=Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == NamedTuple{(:x, :y), Tuple{typeof(X), typeof(Y)}}
@test length(batches) == 3
@test length(batches[1]) == 2
@test length(batches[2]) == 2
@test length(batches[3]) == 2
@test batches[1][1] == batches[1].x == X[:,1:2]
@test batches[1][2] == batches[1].y == Y[1:2]
@test batches[2][1] == batches[2].x == X[:,3:4]
@test batches[2][2] == batches[2].y == Y[3:4]
@test batches[3][1] == batches[3].x == X[:,5:5]
@test batches[3][2] == batches[3].y == Y[5:5]
@test FashionMNIST.images()[1] isa Matrix
@test FashionMNIST.labels() isa Vector{Int64}
# test interaction with `train!`
θ = ones(2)
X = zeros(2, 10)
loss(x) = sum((x .- θ).^2)
d = DataLoader(X)
Flux.train!(loss, [θ], ncycle(d, 10), Descent(0.1))
@test norm(θ) < 1e-4
# test interaction with `train!`
θ = zeros(2)
X = ones(2, 10)
Y = fill(2, 10)
loss(x, y) = sum((y - x'*θ).^2)
d = DataLoader((X, Y))
Flux.train!(loss, [θ], ncycle(d, 10), Descent(0.1))
@test norm(θ .- 1) < 1e-10
end
@testset "CMUDict" begin
@test cmudict()["CATASTROPHE"] == :[K,AH0,T,AE1,S,T,R,AH0,F,IY0].args
@test length(CMUDict.phones()) == 39
@test length(CMUDict.symbols()) == 84
end
@testset "MNIST" begin
@test MNIST.images()[1] isa Matrix
@test MNIST.labels() isa Vector{Int64}
end
@testset "FashionMNIST" begin
@test FashionMNIST.images()[1] isa Matrix
@test FashionMNIST.labels() isa Vector{Int64}
end
@testset "Sentiment" begin
@test Data.Sentiment.train() isa Vector{Data.Tree{Any}}
end
@testset "Iris" begin
@test Iris.features() isa Matrix
@test size(Iris.features()) == (4,150)
@test Iris.labels() isa Vector{String}
@test size(Iris.labels()) == (150,)
end
@testset "Housing" begin
@test Housing.features() isa Matrix # test broken due to SSL certifate expiration problem
@test size(Housing.features()) == (506, 13)
@test Housing.targets() isa Array{Float64}
@test size(Housing.targets()) == (506, 1)
end
@test Data.Sentiment.train() isa Vector{Data.Tree{Any}}

View File

@ -1,117 +1,33 @@
using Test, Random
import Flux: activations
@testset "basic" begin
@testset "helpers" begin
@testset "activations" begin
dummy_model = Chain(x->x.^2, x->x .- 3, x -> tan.(x))
x = randn(10)
@test activations(dummy_model, x)[1] == x.^2
@test activations(dummy_model, x)[2] == (x.^2 .- 3)
@test activations(dummy_model, x)[3] == tan.(x.^2 .- 3)
@test activations(Chain(), x) == ()
@test activations(Chain(identity, x->:foo), x)[2] == :foo # results include `Any` type
end
end
@testset "Chain" begin
@test_nowarn Chain(Dense(10, 5, σ), Dense(5, 2))(randn(10))
@test_throws DimensionMismatch Chain(Dense(10, 5, σ),Dense(2, 1))(randn(10))
# numeric test should be put into testset of corresponding layer
end
@testset "Activations" begin
c = Chain(Dense(3,5,relu), Dense(5,1,relu))
X = Float32.([1.0; 1.0; 1.0])
@test_nowarn gradient(()->Flux.activations(c, X)[2][1], params(c))
end
@testset "Dense" begin
@testset "constructors" begin
@test size(Dense(10, 100).W) == (100, 10)
@test Dense(rand(100,10), rand(10)).σ == identity
@test_throws MethodError Dense(10, 10.5)
@test_throws MethodError Dense(10, 10.5, tanh)
@testset "Chain" begin
@test_nowarn Chain(Dense(10, 5, σ), Dense(5, 2))(randn(10))
@test_throws DimensionMismatch Chain(Dense(10, 5, σ),Dense(2, 1))(randn(10))
# numeric test should be put into testset of corresponding layer
end
@test length(Dense(10, 5)(randn(10))) == 5
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
@test_throws MethodError Dense(10, 5).(randn(10)) # avoid broadcasting
@testset "Dense" begin
@test length(Dense(10, 5)(randn(10))) == 5
@test_throws DimensionMismatch Dense(10, 5)(randn(1))
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
@test_throws MethodError Dense(10, 5).(randn(10)) # avoid broadcasting
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(1, 1)
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
end
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(1, 1)
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
@testset "Diagonal" begin
@test length(Flux.Diagonal(10)(randn(10))) == 10
@test length(Flux.Diagonal(10)(1)) == 10
@test length(Flux.Diagonal(10)(randn(1))) == 10
@test_throws DimensionMismatch Flux.Diagonal(10)(randn(2))
@test Flux.Diagonal(2)([1 2]) == [1 2; 1 2]
@test Flux.Diagonal(2)([1,2]) == [1,2]
@test Flux.Diagonal(2)([1 2; 3 4]) == [1 2; 3 4]
end
@testset "Maxout" begin
# Note that the normal common usage of Maxout is as per the docstring
# These are abnormal constructors used for testing purposes
@testset "Constructor" begin
mo = Maxout(() -> identity, 4)
input = rand(40)
@test mo(input) == input
end
@testset "simple alternatives" begin
mo = Maxout((x -> x, x -> 2x, x -> 0.5x))
input = rand(40)
@test mo(input) == 2*input
@testset "Diagonal" begin
@test length(Flux.Diagonal(10)(randn(10))) == 10
@test length(Flux.Diagonal(10)(1)) == 10
@test length(Flux.Diagonal(10)(randn(1))) == 10
@test_throws DimensionMismatch Flux.Diagonal(10)(randn(2))
@test Flux.Diagonal(2)([1 2]) == [1 2; 1 2]
@test Flux.Diagonal(2)([1,2]) == [1,2]
@test Flux.Diagonal(2)([1 2; 3 4]) == [1 2; 3 4]
end
@testset "complex alternatives" begin
mo = Maxout((x -> [0.5; 0.1]*x, x -> [0.2; 0.7]*x))
input = [3.0 2.0]
target = [0.5, 0.7].*input
@test mo(input) == target
end
@testset "params" begin
mo = Maxout(()->Dense(32, 64), 4)
ps = params(mo)
@test length(ps) == 8 #4 alts, each with weight and bias
end
end
@testset "SkipConnection" begin
@testset "zero sum" begin
input = randn(10, 10, 10, 10)
@test SkipConnection(x -> zeros(size(x)), (a,b) -> a + b)(input) == input
end
@testset "concat size" begin
input = randn(10, 2)
@test size(SkipConnection(Dense(10,10), (a,b) -> cat(a, b, dims = 2))(input)) == (10,4)
end
end
@testset "output dimensions" begin
m = Chain(Conv((3, 3), 3 => 16), Conv((3, 3), 16 => 32))
@test Flux.outdims(m, (10, 10)) == (6, 6)
m = Dense(10, 5)
@test Flux.outdims(m, (5, 2)) == (5,)
@test Flux.outdims(m, (10,)) == (5,)
m = Flux.Diagonal(10)
@test Flux.outdims(m, (10,)) == (10,)
m = Maxout(() -> Conv((3, 3), 3 => 16), 2)
@test Flux.outdims(m, (10, 10)) == (8, 8)
end
end

View File

@ -1,17 +1,12 @@
using Flux, Test
using Flux: maxpool, meanpool
using Flux: gradient
@testset "Pooling" begin
x = randn(Float32, 10, 10, 3, 2)
gmp = GlobalMaxPool()
@test size(gmp(x)) == (1, 1, 3, 2)
gmp = GlobalMeanPool()
@test size(gmp(x)) == (1, 1, 3, 2)
mp = MaxPool((2, 2))
@test mp(x) == maxpool(x, PoolDims(x, 2))
@test mp(x) == maxpool(x, (2,2))
mp = MeanPool((2, 2))
@test mp(x) == meanpool(x, PoolDims(x, 2))
@test mp(x) == meanpool(x, (2,2))
end
@testset "CNN" begin
@ -25,194 +20,16 @@ end
Dense(288, 10), softmax)
@test size(m(r)) == (10, 5)
# Test bias switch
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3))
ip = zeros(Float32, 28,28,1,1)
op = bias(ip)
@test sum(op) == prod(size(op))
bias = Conv((2,2), 1=>3, bias = Flux.Zeros())
op = bias(ip)
@test sum(op) === 0.f0
gs = gradient(() -> sum(bias(ip)), Flux.params(bias))
@test gs[bias.bias] == nothing
# Train w/o bias and make sure no convergence happens
# when only bias can be converged
bias = Conv((2, 2), 1=>3, bias = Flux.Zeros());
ip = zeros(Float32, 28,28,1,1)
op = zeros(Float32, 27,27,3,1) .+ 2.f0
opt = Descent()
for _ = 1:10^3
gs = gradient(params(bias)) do
Flux.mse(bias(ip), op)
end
Flux.Optimise.update!(opt, params(bias), gs)
end
@test Flux.mse(bias(ip), op) 4.f0
end
@testset "asymmetric padding" begin
r = ones(Float32, 28, 28, 1, 1)
m = Conv((3, 3), 1=>1, relu; pad=(0,1,1,2))
m.weight[:] .= 1.0
m.bias[:] .= 0.0
y_hat = m(r)[:,:,1,1]
@test size(y_hat) == (27, 29)
@test y_hat[1, 1] 6.0
@test y_hat[2, 2] 9.0
@test y_hat[end, 1] 4.0
@test y_hat[1, end] 3.0
@test y_hat[1, end-1] 6.0
@test y_hat[end, end] 2.0
end
@testset "Depthwise Conv" begin
r = zeros(Float32, 28, 28, 3, 5)
m1 = DepthwiseConv((2, 2), 3=>15)
m1 = DepthwiseConv((2, 2), 3=>5)
@test size(m1(r), 3) == 15
m3 = DepthwiseConv((2, 3), 3=>9)
@test size(m3(r), 3) == 9
m2 = DepthwiseConv((2, 2), 3)
# Test that we cannot ask for non-integer multiplication factors
@test_throws AssertionError DepthwiseConv((2,2), 3=>10)
end
@testset "ConvTranspose" begin
x = zeros(Float32, 28, 28, 1, 1)
y = Conv((3,3), 1 => 1)(x)
x_hat = ConvTranspose((3, 3), 1 => 1)(y)
@test size(x_hat) == size(x)
m = ConvTranspose((3,3), 1=>1)
# Test that the gradient call does not throw: #900
@test gradient(()->sum(m(x)), params(m)) isa Flux.Zygote.Grads
end
@testset "CrossCor" begin
x = rand(Float32, 28, 28, 1, 1)
w = rand(2,2,1,1)
y = CrossCor(w, [0.0])
@test isapprox(sum(w .* x[1:2, 1:2, :, :]), y(x)[1, 1, 1, 1], rtol=1e-7)
r = zeros(Float32, 28, 28, 1, 5)
m = Chain(
CrossCor((2, 2), 1=>16, relu),
MaxPool((2,2)),
CrossCor((2, 2), 16=>8, relu),
MaxPool((2,2)),
x -> reshape(x, :, size(x, 4)),
Dense(288, 10), softmax)
@test size(m(r)) == (10, 5)
@test y(x) != Conv(w, [0.0])(x)
@test CrossCor(w[end:-1:1, end:-1:1, :, :], [0.0])(x) == Conv(w, [0.0])(x)
end
@testset "Conv with non quadratic window #700" begin
data = zeros(Float32, 7,7,1,1)
data[4,4,1,1] = 1
l = Conv((3,3), 1=>1)
expected = zeros(eltype(l.weight),5,5,1,1)
expected[2:end-1,2:end-1,1,1] = l.weight
@test expected l(data)
l = Conv((3,1), 1=>1)
expected = zeros(eltype(l.weight),5,7,1,1)
expected[2:end-1,4,1,1] = l.weight
@test expected l(data)
l = Conv((1,3), 1=>1)
expected = zeros(eltype(l.weight),7,5,1,1)
expected[4,2:end-1,1,1] = l.weight
@test expected l(data)
@test begin
# we test that the next expression does not throw
randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ)
true
end
end
@testset "conv output dimensions" begin
m = Conv((3, 3), 3 => 16)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = Conv((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = ConvTranspose((3, 3), 3 => 16)
@test Flux.outdims(m, (8, 8)) == (10, 10)
m = ConvTranspose((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (2, 2)) == (5, 5)
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (4, 4)) == (5, 5)
m = DepthwiseConv((3, 3), 3 => 6)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = CrossCor((3, 3), 3 => 16)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = CrossCor((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MaxPool((2, 2))
@test Flux.outdims(m, (10, 10)) == (5, 5)
m = MaxPool((2, 2); stride = 1)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MaxPool((2, 2); stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = MeanPool((2, 2))
@test Flux.outdims(m, (10, 10)) == (5, 5)
m = MeanPool((2, 2); stride = 1)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MeanPool((2, 2); stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
end
@testset "$ltype SamePad kernelsize $k" for ltype in (Conv, ConvTranspose, DepthwiseConv, CrossCor), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, 1=>1, pad=SamePad())
@test size(l(data)) == size(data)
l = ltype(k, 1=>1, pad=SamePad(), dilation = k 2)
@test size(l(data)) == size(data)
stride = 3
l = ltype(k, 1=>1, pad=SamePad(), stride = stride)
if ltype == ConvTranspose
@test size(l(data))[1:end-2] == stride .* size(data)[1:end-2] .- stride .+ 1
else
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ stride)
end
end
@testset "$ltype SamePad windowsize $k" for ltype in (MeanPool, MaxPool), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, pad=SamePad())
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ k)
@test size(m2(r), 3) == 3
end

View File

@ -1,296 +1,201 @@
using Flux, Test, Statistics
using Zygote: pullback
using Flux, Test
using Zygote: forward
evalwgrad(f, x...) = pullback(f, x...)[1]
trainmode(f, x...) = forward(f, x...)[1]
@testset "Dropout" begin
x = [1.,2.,3.]
@test x == Dropout(0.1)(x)
@test x == evalwgrad(Dropout(0), x)
@test zero(x) == evalwgrad(Dropout(1), x)
@test x == trainmode(Dropout(0), (x))
@test zero(x) == trainmode(Dropout(1), (x))
x = rand(100)
m = Dropout(0.9)
y = evalwgrad(m, x)
y = trainmode(m, x)
@test count(a->a==0, y) > 50
testmode!(m, true)
y = evalwgrad(m, x) # should override istraining
y = m(x)
@test count(a->a==0, y) == 0
testmode!(m, false)
y = evalwgrad(m, x)
y = trainmode(m, x)
@test count(a->a==0, y) > 50
x = rand(Float32, 100)
m = Chain(Dense(100,100),
Dropout(0.9))
y = evalwgrad(m, x)
y = trainmode(m, x)
@test count(a->a == 0, y) > 50
testmode!(m, true)
y = evalwgrad(m, x) # should override istraining
y = m(x)
@test count(a->a == 0, y) == 0
x = rand(100, 50)
m = Dropout(0.5, dims = 2)
y = m(x)
c = map(i->count(a->a==0, @view y[i, :]), 1:100)
@test minimum(c) == maximum(c)
m = Dropout(0.5, dims = 1)
y = m(x)
c = map(i->count(a->a==0, @view y[:, i]), 1:50)
@test minimum(c) == maximum(c)
end
@testset "BatchNorm" begin
let m = BatchNorm(2), x = [1.0 3.0 5.0;
2.0 4.0 6.0]
# @testset "BatchNorm" begin
# let m = BatchNorm(2), x = [1 3 5;
# 2 4 6]
#
# @test m.β.data == [0, 0] # initβ(2)
# @test m.γ.data == [1, 1] # initγ(2)
# # initial m.σ is 1
# # initial m.μ is 0
# @test m.active
#
# # @test m(x).data ≈ [-1 -1; 0 0; 1 1]'
# m(x)
#
# # julia> x
# # 2×3 Array{Float64,2}:
# # 1.0 3.0 5.0
# # 2.0 4.0 6.0
# #
# # μ of batch will be
# # (1. + 3. + 5.) / 3 = 3
# # (2. + 4. + 6.) / 3 = 4
# #
# # ∴ update rule with momentum:
# # .1 * 3 + 0 = .3
# # .1 * 4 + 0 = .4
# @test m.μ ≈ reshape([0.3, 0.4], 2, 1)
#
# # julia> .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
# # 2×1 Array{Float64,2}:
# # 1.3
# # 1.3
# @test m.σ² ≈ .1 .* var(x.data, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
#
# testmode!(m)
# @test !m.active
#
# x = m(x).data
# @test isapprox(x[1], (1 .- 0.3) / sqrt(1.3), atol = 1.0e-5)
# end
#
# # with activation function
# let m = BatchNorm(2, sigmoid), x = param([1 3 5;
# 2 4 6])
# @test m.active
# m(x)
#
# testmode!(m)
# @test !m.active
#
# y = m(x).data
# @test isapprox(y, data(sigmoid.((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ))), atol = 1.0e-7)
# end
#
# let m = BatchNorm(2), x = param(reshape(1:6, 3, 2, 1))
# y = reshape(permutedims(x, [2, 1, 3]), 2, :)
# y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3])
# @test m(x) == y
# end
#
# let m = BatchNorm(2), x = param(reshape(1:12, 2, 3, 2, 1))
# y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
# y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
# @test m(x) == y
# end
#
# let m = BatchNorm(2), x = param(reshape(1:24, 2, 2, 3, 2, 1))
# y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :)
# y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
# @test m(x) == y
# end
#
# let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1);
# m(x)
# @test (@allocated m(x)) < 100_000_000
# end
# end
@test length(params(m)) == 2
@test m.β == [0, 0] # initβ(2)
@test m.γ == [1, 1] # initγ(2)
# initial m.σ is 1
# initial m.μ is 0
y = evalwgrad(m, x)
@test isapprox(y, [-1.22474 0 1.22474; -1.22474 0 1.22474], atol = 1.0e-5)
# julia> x
# 2×3 Array{Float64,2}:
# 1.0 3.0 5.0
# 2.0 4.0 6.0
#
# μ of batch will be
# (1. + 3. + 5.) / 3 = 3
# (2. + 4. + 6.) / 3 = 4
#
# ∴ update rule with momentum:
# .1 * 3 + 0 = .3
# .1 * 4 + 0 = .4
@test m.μ reshape([0.3, 0.4], 2, 1)
# julia> .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
# 2×1 Array{Float64,2}:
# 1.3
# 1.3
@test m.σ² .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
x = m(x)
@test isapprox(x[1], (1 .- 0.3) / sqrt(1.3), atol = 1.0e-5)
end
# with activation function
let m = BatchNorm(2, sigmoid), x = [1.0 3.0 5.0;
2.0 4.0 6.0]
y = m(x)
@test isapprox(y, sigmoid.((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ)), atol = 1.0e-7)
end
let m = trainmode!(BatchNorm(2)), x = reshape(Float32.(1:6), 3, 2, 1)
y = reshape(permutedims(x, [2, 1, 3]), 2, :)
y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3])
@test m(x) == y
end
let m = trainmode!(BatchNorm(2)), x = reshape(Float32.(1:12), 2, 3, 2, 1)
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
@test m(x) == y
end
let m = trainmode!(BatchNorm(2)), x = reshape(Float32.(1:24), 2, 2, 3, 2, 1)
y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
@test m(x) == y
end
let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1);
m(x)
@test (@allocated m(x)) < 100_000_000
end
end
@testset "InstanceNorm" begin
# helper functions
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
# begin tests
let m = InstanceNorm(2), sizes = (3, 2, 2),
x = reshape(collect(1:prod(sizes)), sizes)
@test length(params(m)) == 2
x = Float64.(x)
@test m.β == [0, 0] # initβ(2)
@test m.γ == [1, 1] # initγ(2)
y = evalwgrad(m, x)
#julia> x
#[:, :, 1] =
# 1.0 4.0
# 2.0 5.0
# 3.0 6.0
#
#[:, :, 2] =
# 7.0 10.0
# 8.0 11.0
# 9.0 12.0
#
# μ will be
# (1. + 2. + 3.) / 3 = 2.
# (4. + 5. + 6.) / 3 = 5.
#
# (7. + 8. + 9.) / 3 = 8.
# (10. + 11. + 12.) / 3 = 11.
#
# ∴ update rule with momentum:
# (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5
# (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8
@test m.μ [0.5, 0.8]
# momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq
# julia> reshape(mean(.1 .* var(x, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
# 2-element Array{Float64,1}:
# 1.
# 1.
@test m.σ² reshape(mean(.1 .* var(x, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
x = m(x)
@test isapprox(x[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5)
end
# with activation function
let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2),
x = reshape(collect(1:prod(sizes)), sizes)
x = Float64.(x)
affine_shape = collect(sizes)
affine_shape[1] = 1
y = m(x)
@test isapprox(y, sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ)), atol = 1.0e-7)
end
let m = trainmode!(InstanceNorm(2)), sizes = (2, 4, 1, 2, 3),
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
y = reshape(m(y), sizes...)
@test m(x) == y
end
# check that μ, σ², and the output are the correct size for higher rank tensors
let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6),
x = reshape(Float32.(collect(1:prod(sizes))), sizes)
y = evalwgrad(m, x)
@test size(m.μ) == (sizes[end - 1], )
@test size(m.σ²) == (sizes[end - 1], )
@test size(y) == sizes
end
# show that instance norm is equal to batch norm when channel and batch dims are squashed
let m_inorm = trainmode!(InstanceNorm(2)), m_bnorm = trainmode!(BatchNorm(12)), sizes = (5, 5, 3, 4, 2, 6),
x = reshape(Float32.(collect(1:prod(sizes))), sizes)
@test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes)
end
let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1);
m(x)
@test (@allocated m(x)) < 100_000_000
end
end
if VERSION >= v"1.1"
@testset "GroupNorm" begin
# begin tests
squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions
let m = GroupNorm(4,2), sizes = (3,4,2),
x = reshape(collect(1:prod(sizes)), sizes)
@test length(params(m)) == 2
x = Float64.(x)
@test m.β == [0, 0, 0, 0] # initβ(32)
@test m.γ == [1, 1, 1, 1] # initγ(32)
y = evalwgrad(m, x)
#julia> x
#[:, :, 1] =
# 1.0 4.0 7.0 10.0
# 2.0 5.0 8.0 11.0
# 3.0 6.0 9.0 12.0
#
#[:, :, 2] =
# 13.0 16.0 19.0 22.0
# 14.0 17.0 20.0 23.0
# 15.0 18.0 21.0 24.0
#
# μ will be
# (1. + 2. + 3. + 4. + 5. + 6.) / 6 = 3.5
# (7. + 8. + 9. + 10. + 11. + 12.) / 6 = 9.5
#
# (13. + 14. + 15. + 16. + 17. + 18.) / 6 = 15.5
# (19. + 20. + 21. + 22. + 23. + 24.) / 6 = 21.5
#
# μ =
# 3.5 15.5
# 9.5 21.5
#
# ∴ update rule with momentum:
# (1. - .1) * 0 + .1 * (3.5 + 15.5) / 2 = 0.95
# (1. - .1) * 0 + .1 * (9.5 + 21.5) / 2 = 1.55
@test m.μ [0.95, 1.55]
# julia> mean(var(reshape(x,3,2,2,2),dims=(1,2)).* .1,dims=2) .+ .9*1.
# 2-element Array{Float64,1}:
# 1.25
# 1.25
@test m.σ² mean(squeeze(var(reshape(x,3,2,2,2),dims=(1,2))).*.1,dims=2) .+ .9*1.
x = m(x)
@test isapprox(x[1], (1 - 0.95) / sqrt(1.25 + 1f-5), atol = 1.0e-5)
end
# with activation function
let m = GroupNorm(4,2, sigmoid), sizes = (3, 4, 2),
x = reshape(collect(1:prod(sizes)), sizes)
x = Float64.(x)
μ_affine_shape = ones(Int,length(sizes) + 1)
μ_affine_shape[end-1] = 2 # Number of groups
affine_shape = ones(Int,length(sizes) + 1)
affine_shape[end-2] = 2 # Channels per group
affine_shape[end-1] = 2 # Number of groups
affine_shape[1] = sizes[1]
affine_shape[end] = sizes[end]
og_shape = size(x)
y = m(x)
x_ = reshape(x,affine_shape...)
out = reshape(sigmoid.((x_ .- reshape(m.μ,μ_affine_shape...)) ./ sqrt.(reshape(m.σ²,μ_affine_shape...) .+ m.ϵ)),og_shape)
@test isapprox(y, out, atol = 1.0e-7)
end
let m = trainmode!(GroupNorm(2,2)), sizes = (2, 4, 1, 2, 3),
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
y = reshape(m(y), sizes...)
@test m(x) == y
end
# check that μ, σ², and the output are the correct size for higher rank tensors
let m = GroupNorm(4,2), sizes = (5, 5, 3, 4, 4, 6),
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
y = evalwgrad(m, x)
@test size(m.μ) == (m.G,1)
@test size(m.σ²) == (m.G,1)
@test size(y) == sizes
end
# show that group norm is the same as instance norm when the group size is the same as the number of channels
let IN = trainmode!(InstanceNorm(4)), GN = trainmode!(GroupNorm(4,4)), sizes = (2,2,3,4,5),
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
@test IN(x) GN(x)
end
# show that group norm is the same as batch norm for a group of size 1 and batch of size 1
let BN = trainmode!(BatchNorm(4)), GN = trainmode!(GroupNorm(4,4)), sizes = (2,2,3,4,1),
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
@test BN(x) GN(x)
end
end
end
# @testset "InstanceNorm" begin
# # helper functions
# expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
# # begin tests
# let m = InstanceNorm(2), sizes = (3, 2, 2),
# x = reshape(collect(1:prod(sizes)), sizes)
#
# @test m.β.data == [0, 0] # initβ(2)
# @test m.γ.data == [1, 1] # initγ(2)
#
# @test m.active
#
# m(x)
#
# #julia> x
# #[:, :, 1] =
# # 1.0 4.0
# # 2.0 5.0
# # 3.0 6.0
# #
# #[:, :, 2] =
# # 7.0 10.0
# # 8.0 11.0
# # 9.0 12.0
# #
# # μ will be
# # (1. + 2. + 3.) / 3 = 2.
# # (4. + 5. + 6.) / 3 = 5.
# #
# # (7. + 8. + 9.) / 3 = 8.
# # (10. + 11. + 12.) / 3 = 11.
# #
# # ∴ update rule with momentum:
# # (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5
# # (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8
# @test m.μ ≈ [0.5, 0.8]
# # momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq
# # julia> reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
# # 2-element Array{Float64,1}:
# # 1.
# # 1.
# @test m.σ² ≈ reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
#
# testmode!(m)
# @test !m.active
#
# x = m(x).data
# @test isapprox(x[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5)
# end
# # with activation function
# let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2),
# x = reshape(collect(1:prod(sizes)), sizes)
#
# affine_shape = collect(sizes)
# affine_shape[1] = 1
#
# @test m.active
# m(x)
#
# testmode!(m)
# @test !m.active
#
# y = m(x).data
# @test isapprox(y, data(sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ))), atol = 1.0e-7)
# end
#
# let m = InstanceNorm(2), sizes = (2, 4, 1, 2, 3),
# x = reshape(collect(1:prod(sizes)), sizes)
# y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
# y = reshape(m(y), sizes...)
# @test m(x) == y
# end
#
# # check that μ, σ², and the output are the correct size for higher rank tensors
# let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6),
# x = reshape(collect(1:prod(sizes)), sizes)
# y = m(x)
# @test size(m.μ) == (sizes[end - 1], )
# @test size(m.σ²) == (sizes[end - 1], )
# @test size(y) == sizes
# end
#
# # show that instance norm is equal to batch norm when channel and batch dims are squashed
# let m_inorm = InstanceNorm(2), m_bnorm = BatchNorm(12), sizes = (5, 5, 3, 4, 2, 6),
# x = reshape(collect(1:prod(sizes)), sizes)
# @test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes)
# end
#
# let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1);
# m(x)
# @test (@allocated m(x)) < 100_000_000
# end
#
# end

View File

@ -1,26 +1,10 @@
using Test
using Flux: onehotbatch, mse, crossentropy, logitcrossentropy,
σ, binarycrossentropy, logitbinarycrossentropy, flatten,
xlogx, xlogy
σ, binarycrossentropy, logitbinarycrossentropy
using Zygote
const ϵ = 1e-7
@testset "xlogx & xlogy" begin
@test iszero(xlogx(0))
@test isnan(xlogx(NaN))
@test xlogx(2) 2.0 * log(2.0)
@inferred xlogx(2)
@inferred xlogx(0)
@test iszero(xlogy(0, 1))
@test isnan(xlogy(NaN, 1))
@test isnan(xlogy(1, NaN))
@test isnan(xlogy(NaN, NaN))
@test xlogy(2, 3) 2.0 * log(3.0)
@inferred xlogy(2, 3)
@inferred xlogy(0, 1)
end
@testset "losses" begin
# First, regression-style y's
y = [1, 1, 0, 0]
@ -30,20 +14,6 @@ end
@test mse(ŷ, y) (.1^2 + .9^2)/2
end
@testset "mae" begin
@test Flux.mae(ŷ, y) 1/2
end
@testset "huber_loss" begin
@test Flux.huber_loss(ŷ, y) 0.20500000000000002
end
y = [123.0,456.0,789.0]
ŷ = [345.0,332.0,789.0]
@testset "msle" begin
@test Flux.msle(ŷ, y) 0.38813985859136585
end
# Now onehot y's
y = onehotbatch([1, 1, 0, 0], 0:1)
ŷ = [.1 .9; .9 .1; .9 .1; .1 .9]'
@ -52,7 +22,6 @@ end
lossvalue = 1.203972804325936
@testset "crossentropy" begin
@test crossentropy([0.1,0.0,0.9], [0.1,0.0,0.9]) crossentropy([0.1,0.9], [0.1,0.9])
@test crossentropy(ŷ, y) lossvalue
end
@ -82,63 +51,15 @@ end
@test logitbinarycrossentropy.(logŷ, y) binarycrossentropy.(σ.(logŷ), y; ϵ=0)
end
y = [1 2 3]
ŷ = [4.0 5.0 6.0]
@testset "kldivergence" begin
@test Flux.kldivergence([0.1,0.0,0.9], [0.1,0.0,0.9]) Flux.kldivergence([0.1,0.9], [0.1,0.9])
@test Flux.kldivergence(ŷ, y) -1.7661057888493457
@test Flux.kldivergence(y, y) 0
end
y = [1 2 3 4]
ŷ = [5.0 6.0 7.0 8.0]
@testset "hinge" begin
@test Flux.hinge(ŷ, y) 0
@test Flux.hinge(y, 0.5 .* y) 0.125
end
@testset "squared_hinge" begin
@test Flux.squared_hinge(ŷ, y) 0
@test Flux.squared_hinge(y, 0.5 .* y) 0.0625
end
y = [0.1 0.2 0.3]
ŷ = [0.4 0.5 0.6]
@testset "poisson" begin
@test Flux.poisson(ŷ, y) 0.6278353988097339
@test Flux.poisson(y, y) 0.5044459776946685
end
y = [1.0 0.5 0.3 2.4]
ŷ = [0 1.4 0.5 1.2]
@testset "dice_coeff_loss" begin
@test Flux.dice_coeff_loss(ŷ, y) 0.2799999999999999
@test Flux.dice_coeff_loss(y, y) 0.0
end
@testset "tversky_loss" begin
@test Flux.tversky_loss(ŷ, y) -0.06772009029345383
@test Flux.tversky_loss(ŷ, y, β = 0.8) -0.09490740740740744
@test Flux.tversky_loss(y, y) -0.5576923076923075
end
@testset "no spurious promotions" begin
for T in (Float32, Float64)
for T in (Float16, Float32, Float64)
y = rand(T, 2)
ŷ = rand(T, 2)
for f in (mse, crossentropy, logitcrossentropy, Flux.kldivergence, Flux.hinge, Flux.poisson,
Flux.mae, Flux.huber_loss, Flux.msle, Flux.squared_hinge, Flux.dice_coeff_loss, Flux.tversky_loss)
fwd, back = Flux.pullback(f, , y)
for f in (mse, crossentropy, logitcrossentropy)
fwd, back = Zygote.forward(mse, , y)
@test fwd isa T
@test eltype(back(one(T))[1]) == T
end
end
end
end
@testset "helpers" begin
@testset "flatten" begin
x = randn(Float32, 10, 10, 3, 2)
@test size(flatten(x)) == (300, 2)
end
end

View File

@ -11,9 +11,3 @@ using Test
@test onecold(a, labels) == 'C'
@test onecold(A, labels) == ['C', 'A', 'D']
end
@testset "onehotbatch indexing" begin
y = Flux.onehotbatch(ones(3), 1:10)
@test y[:,1] isa Flux.OneHotVector
@test y[:,:] isa Flux.OneHotMatrix
end

View File

@ -1,113 +1,55 @@
using Flux.Optimise
using Flux.Optimise: runall
using Flux: Params, gradient
using Zygote: Params, gradient
using Test
# @testset "Optimise" begin
# w = randn(10, 10)
# @testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
# NADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
# Momentum()]
# w = randn(10, 10)
# loss(x) = Flux.mse(w*x, w*x)
# for t = 1: 10^5
# θ = Params([w])
# θ̄ = gradient(() -> loss(rand(10)), θ)
# Optimise.update!(opt, θ, θ̄)
# end
# @test Flux.mse(w, w) < 0.01
# end
# end
@testset "Optimise" begin
w = randn(10, 10)
@testset for opt in [ADAMW(), ADAGrad(0.1), AdaMax(), ADADelta(0.9), AMSGrad(),
NADAM(), RADAM(), Descent(0.1), ADAM(), Nesterov(), RMSProp(),
Momentum()]
w = randn(10, 10)
loss(x) = Flux.mse(w*x, w*x)
for t = 1: 10^5
θ = Params([w])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
Optimise.update!(opt, θ, θ̄)
end
@test loss(rand(10, 10)) < 0.01
end
end
# @testset "Optimiser" begin
# w = randn(10, 10)
# @testset for Opt in [InvDecay, WeightDecay, ExpDecay]
# w = param(randn(10, 10))
# loss(x) = Flux.mse(w*x, w*x)
# opt = Optimiser(Opt(), ADAM(0.001))
# for t = 1:10^5
# l = loss(rand(10))
# back!(l)
# delta = Optimise.apply!(opt, w.data, w.grad)
# w.data .-= delta
# end
# @test Flux.mse(w, w) < 0.01
# end
# end
@testset "Optimiser" begin
w = randn(10, 10)
@testset for Opt in [InvDecay, WeightDecay, ExpDecay]
w = randn(10, 10)
loss(x) = Flux.mse(w*x, w*x)
opt = Optimiser(Opt(), ADAM(0.001))
for t = 1:10^5
θ = Params([w])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
Optimise.update!(opt, θ, θ̄)
end
@test loss(rand(10, 10)) < 0.01
end
end
@testset "Training Loop" begin
i = 0
l = 1
Flux.train!(() -> (sleep(0.1); i += 1; l),
(),
Iterators.repeated((), 100),
Descent(),
cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
@test 3 < i < 50
# Test multiple callbacks
x = 0
fs = [() -> (), () -> x = 1]
cbs = runall(fs)
cbs()
@test x == 1
end
@testset "ExpDecay" begin
@testset "Sanity Check" begin
o = ExpDecay(0.2, 0.5, 1, 1e-3)
p = [0.0]
steps = 1:8
eta_expected = @. max(o.eta * 0.5 ^ steps, o.clip)
eta_actual = [Optimise.apply!(o, p, [1.0])[1] for _ in steps]
@test eta_actual == eta_expected
end
w = randn(10, 10)
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
w1 = randn(10,10)
loss(x) = Flux.mse(w*x, w1*x)
flag = 1
decay_steps = []
for t = 1:10^5
prev_eta = o.eta
θ = Params([w1])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
prev_grad = collect(θ̄[w1])
delta = Optimise.apply!(o, w1, θ̄[w1])
w1 .-= delta
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
array = fill(o.eta, size(prev_grad))
if array .* prev_grad != delta
flag = 0
end
end
@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value (1e-4) after 4000 steps (decay by 0.1 every 1000 steps starting at 0.1).
ground_truth = []
for i in 1:4
push!(ground_truth, 1000*i) # Expected decay steps for this example.
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end
@testset "Clipping" begin
w = randn(10, 10)
loss(x) = sum(w * x)
θ = Params([w])
x = 1000 * randn(10)
= gradient(() -> loss(x), θ)[w]
w̄_value = Optimise.apply!(ClipValue(1.0), w, copy())
@test all(w̄_value .<= 1)
w̄_norm = Optimise.apply!(ClipNorm(1.0), w, copy())
@test norm(w̄_norm) <= 1
end
# @testset "Training Loop" begin
# i = 0
# l = 1
#
# Flux.train!(() -> (sleep(0.1); i += 1; l),
# (),
# Iterators.repeated((), 100),
# Descent(),
# cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1))
#
# @test 3 < i < 50
#
# # Test multiple callbacks
# x = 0
# fs = [() -> (), () -> x = 1]
# cbs = runall(fs)
# cbs()
# @test x == 1
# end

View File

@ -1,46 +1,33 @@
using Flux
using Flux.Data
using Test
using Random, Statistics, LinearAlgebra
using IterTools: ncycle
using Flux, Test, Random, Statistics
using Random
Random.seed!(0)
@testset "Utils" begin
include("utils.jl")
# So we can use the system CuArrays
insert!(LOAD_PATH, 2, "@v#.#")
@testset "Flux" begin
@info "Testing Basics"
include("utils.jl")
include("onehot.jl")
include("optimise.jl")
include("data.jl")
@info "Testing Layers"
include("layers/basic.jl")
include("layers/normalisation.jl")
include("layers/stateless.jl")
include("layers/conv.jl")
@info "Running Gradient Checks"
include("tracker.jl")
if Base.find_package("CuArrays") != nothing
include("cuda/cuda.jl")
end
@testset "Onehot" begin
include("onehot.jl")
end
@testset "Optimise" begin
include("optimise.jl")
end
@testset "Data" begin
include("data.jl")
end
@testset "Layers" begin
include("layers/basic.jl")
include("layers/normalisation.jl")
include("layers/stateless.jl")
include("layers/conv.jl")
end
@testset "CUDA" begin
if Flux.use_cuda[]
include("cuda/cuda.jl")
else
@warn "CUDA unavailable, not testing GPU support"
end
end
@static if VERSION >= v"1.4"
using Documenter
@testset "Docs" begin
DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true)
doctest(Flux)
end
end

33
test/tracker.jl Normal file
View File

@ -0,0 +1,33 @@
using Flux, Test
function ngradient(f, xs::AbstractArray...)
grads = zero.(xs)
for (x, Δ) in zip(xs, grads), i in 1:length(x)
δ = sqrt(eps())
tmp = x[i]
x[i] = tmp - δ/2
y1 = f(xs...)
x[i] = tmp + δ/2
y2 = f(xs...)
x[i] = tmp
Δ[i] = (y2-y1)/δ
end
return grads
end
gradcheck(f, xs...) =
all(isapprox.(ngradient(f, xs...),
gradient(f, xs...), rtol = 1e-5, atol = 1e-5))
gradtest(f, xs::AbstractArray...) = gradcheck((xs...) -> sum(sin.(f(xs...))), xs...)
gradtest(f, dims...) = gradtest(f, rand.(Float64, dims)...)
@testset "Tracker" begin
@test gradtest(Flux.mse, rand(5,5), rand(5, 5))
@test gradtest(Flux.crossentropy, rand(5,5), rand(5, 5))
# @test gradtest(x -> Flux.normalise(x), rand(4,3))
# @test gradtest(x -> Flux.normalise(x, dims = 2), rand(3,4))
end

View File

@ -1,6 +1,6 @@
using Flux
using Flux: throttle, nfan, glorot_uniform, glorot_normal, stack, unstack
using StatsBase: var
using Flux: throttle, glorot_uniform, glorot_normal, stack, unstack
using StatsBase: std
using Random
using Test
@ -56,26 +56,18 @@ end
# Set random seed so that these tests don't fail randomly
Random.seed!(0)
@testset "Fan in/out" begin
@test nfan() == (1, 1) #For a constant
@test nfan(100) == (1, 100) #For vector
@test nfan(100, 200) == (200, 100) #For Dense layer
@test nfan(2, 30, 40) == (2 * 30, 2 * 40) #For 1D Conv layer
@test nfan(2, 3, 40, 50) == (2 * 3 * 40, 2 * 3 * 50) #For 2D Conv layer
@test nfan(2, 3, 4, 50, 60) == (2 * 3 * 4 * 50, 2 * 3 * 4 * 60) #For 3D Conv layer
end
# glorot_uniform should yield a kernel with stddev ~= sqrt(6/(n_in + n_out)),
# and glorot_normal should yield a kernel with stddev != 2/(n_in _ n_out)
for (n_in, n_out) in [(100, 100), (100, 400)]
v = glorot_uniform(n_in, n_out)
@test minimum(v) > -1.1*sqrt(6/(n_in + n_out))
@test minimum(v) < -0.9*sqrt(6/(n_in + n_out))
@test maximum(v) > 0.9*sqrt(6/(n_in + n_out))
@test maximum(v) < 1.1*sqrt(6/(n_in + n_out))
@testset "glorot" begin
# glorot_uniform and glorot_normal should both yield a kernel with
# variance ≈ 2/(fan_in + fan_out)
for dims [(1000,), (100, 100), (100, 400), (2, 3, 32, 64), (2, 3, 4, 32, 64)]
for init [glorot_uniform, glorot_normal]
v = init(dims...)
fan_in, fan_out = nfan(dims...)
σ2 = 2 / (fan_in + fan_out)
@test 0.9σ2 < var(v) < 1.1σ2
end
end
v = glorot_normal(n_in, n_out)
@test std(v) > 0.9*sqrt(2/(n_in + n_out))
@test std(v) < 1.1*sqrt(2/(n_in + n_out))
end
end
@ -84,15 +76,6 @@ end
@test size.(params(m)) == [(5, 10), (5,)]
m = RNN(10, 5)
@test size.(params(m)) == [(5, 10), (5, 5), (5,), (5,)]
# Layer duplicated in same chain, params just once pls.
c = Chain(m, m)
@test size.(params(c)) == [(5, 10), (5, 5), (5,), (5,)]
# Self-referential array. Just want params, no stack overflow pls.
r = Any[nothing,m]
r[1] = r
@test size.(params(r)) == [(5, 10), (5, 5), (5,), (5,)]
end
@testset "Basic Stacking" begin