Compare commits

..

No commits in common. "master" and "xlogy-adjoint" have entirely different histories.

28 changed files with 181 additions and 451 deletions

View File

@ -1,12 +0,0 @@
[Please delete this text and describe your change here.
For bugfixes, please detail the bug and include a test case which your patch fixes.
If you are adding a new feature, please clearly describe the design, its rationale, the possible alternatives considered.
It is easiest to merge new features when there is clear precedent in other systems; we need to know we're taking
the right direction since it can be hard to change later.]
### PR Checklist
- [ ] Tests are added
- [ ] Entry in NEWS.md
- [ ] Documentation, if applicable
- [ ] Final review from `@MikeInnes` or `@dhairyagandhi96` (for API changes).

View File

@ -8,35 +8,35 @@ version = "0.5.0"
[[AbstractTrees]] [[AbstractTrees]]
deps = ["Markdown"] deps = ["Markdown"]
git-tree-sha1 = "33e450545eaf7699da1a6e755f9ea65f14077a45" git-tree-sha1 = "86d092c2599f1f7bb01668bf8eb3412f98d61e47"
uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" uuid = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
version = "0.3.3" version = "0.3.2"
[[Adapt]] [[Adapt]]
deps = ["LinearAlgebra"] deps = ["LinearAlgebra"]
git-tree-sha1 = "fd04049c7dd78cfef0b06cdc1f0f181467655712" git-tree-sha1 = "c88cfc7f9c1f9f8633cddf0b56e86302b70f64c5"
uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e" uuid = "79e6a3ab-5dfb-504d-930d-738a2a938a0e"
version = "1.1.0" version = "1.0.1"
[[ArrayLayouts]] [[ArrayLayouts]]
deps = ["FillArrays", "LinearAlgebra"] deps = ["FillArrays", "LinearAlgebra"]
git-tree-sha1 = "a504dca2ac7eda8761c8f7c1ed52427a1be75a3c" git-tree-sha1 = "41956a49a8a4fefa1bf6664bca4a3035aba4c3a0"
uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a" uuid = "4c555306-a7a7-4459-81d9-ec55ddd5c99a"
version = "0.2.6" version = "0.2.3"
[[Base64]] [[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f" uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BinaryProvider]] [[BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"] deps = ["Libdl", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058" git-tree-sha1 = "5b08ed6036d9d3f0ee6369410b830f8873d4024c"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232" uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10" version = "0.5.8"
[[CEnum]] [[CEnum]]
git-tree-sha1 = "1b77a77c3b28e0b3f413f7567c9bb8dd9bdccd14" git-tree-sha1 = "62847acab40e6855a9b5905ccb99c2b5cf6b3ebb"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82" uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.3.0" version = "0.2.0"
[[CUDAapi]] [[CUDAapi]]
deps = ["Libdl", "Logging"] deps = ["Libdl", "Logging"]
@ -46,21 +46,21 @@ version = "4.0.0"
[[CUDAdrv]] [[CUDAdrv]]
deps = ["CEnum", "CUDAapi", "Printf"] deps = ["CEnum", "CUDAapi", "Printf"]
git-tree-sha1 = "f56bbf18c86bcff7a961a32a4947a5abb2963a29" git-tree-sha1 = "e650cbaee92b60433313157926b1e80d0c3a0e2e"
uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde" uuid = "c5f51814-7f29-56b8-a69c-e4d8f6be1fde"
version = "6.3.0" version = "6.2.2"
[[CUDAnative]] [[CUDAnative]]
deps = ["Adapt", "BinaryProvider", "CEnum", "CUDAapi", "CUDAdrv", "ExprTools", "GPUCompiler", "LLVM", "Libdl", "Pkg", "Printf"] deps = ["Adapt", "BinaryProvider", "CEnum", "CUDAapi", "CUDAdrv", "Cthulhu", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "MacroTools", "Pkg", "Printf", "TimerOutputs"]
git-tree-sha1 = "ac86db2b05fdfec96b011e25a504ffe7476e8a68" git-tree-sha1 = "d1fc99635d0002c8a819b78cb1f441eb44310725"
uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17" uuid = "be33ccc6-a3ff-5ff2-a52e-74243cff1e17"
version = "3.1.0" version = "3.0.2"
[[CodeTracking]] [[CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"] deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "cab4da992adc0a64f63fa30d2db2fd8bec40cab4" git-tree-sha1 = "0becdab7e6fbbcb7b88d8de5b72e5bb2f28239f3"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2" uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "0.5.11" version = "0.5.8"
[[CodecZlib]] [[CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"] deps = ["TranscodingStreams", "Zlib_jll"]
@ -70,15 +70,15 @@ version = "0.7.0"
[[ColorTypes]] [[ColorTypes]]
deps = ["FixedPointNumbers", "Random"] deps = ["FixedPointNumbers", "Random"]
git-tree-sha1 = "c73d9cfc2a9d8433dc77f5bff4bddf46b1d78c20" git-tree-sha1 = "c4c1cca28748906265ed62c788d6fe6f0134d264"
uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f" uuid = "3da002f7-5984-5a60-b8a6-cbb66c0b333f"
version = "0.10.3" version = "0.10.0"
[[Colors]] [[Colors]]
deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Reexport"] deps = ["ColorTypes", "FixedPointNumbers", "InteractiveUtils", "Reexport"]
git-tree-sha1 = "1e9bba7984e78aa8cdeea7f9f7cc984ad4e4b1c7" git-tree-sha1 = "2fdeb981ebcf52cd800ddb6a0aa5eac34153552d"
uuid = "5ae59095-9a9b-59fe-a467-6f913c188581" uuid = "5ae59095-9a9b-59fe-a467-6f913c188581"
version = "0.12.2" version = "0.12.0"
[[CommonSubexpressions]] [[CommonSubexpressions]]
deps = ["Test"] deps = ["Test"]
@ -93,27 +93,27 @@ uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.3.3+0" version = "0.3.3+0"
[[Cthulhu]] [[Cthulhu]]
deps = ["CodeTracking", "InteractiveUtils", "REPL", "UUIDs", "Unicode"] deps = ["CodeTracking", "InteractiveUtils", "REPL", "Unicode"]
git-tree-sha1 = "f3643e78353199d3097821e806348bd83f364155" git-tree-sha1 = "484790098c85c26f8e59051f8ff1a0745c034a7d"
uuid = "f68482b8-f384-11e8-15f7-abe071a5a75f" uuid = "f68482b8-f384-11e8-15f7-abe071a5a75f"
version = "1.1.1" version = "1.0.1"
[[CuArrays]] [[CuArrays]]
deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SparseArrays", "Statistics", "TimerOutputs"] deps = ["AbstractFFTs", "Adapt", "CEnum", "CUDAapi", "CUDAdrv", "CUDAnative", "DataStructures", "GPUArrays", "Libdl", "LinearAlgebra", "MacroTools", "NNlib", "Pkg", "Printf", "Random", "Reexport", "Requires", "SparseArrays", "Statistics", "TimerOutputs"]
git-tree-sha1 = "1582b74d2322df7dd94549d4ac9d095e0f20e884" git-tree-sha1 = "e8c55b38dcca955f5aed8ec4479cdc95810db1e1"
uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae" uuid = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
version = "2.2.1" version = "2.0.1"
[[DataAPI]] [[DataAPI]]
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32" git-tree-sha1 = "674b67f344687a88310213ddfa8a2b3c76cc4252"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a" uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.3.0" version = "1.1.0"
[[DataStructures]] [[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections"] deps = ["InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "af6d9c86e191c917c2276fbede1137e8ea20157f" git-tree-sha1 = "73eb18320fe3ba58790c8b8f6f89420f0a622773"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8" uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.17.17" version = "0.17.11"
[[Dates]] [[Dates]]
deps = ["Printf"] deps = ["Printf"]
@ -139,16 +139,11 @@ version = "1.0.1"
deps = ["Random", "Serialization", "Sockets"] deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b" uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[ExprTools]]
git-tree-sha1 = "6f0517056812fd6aa3af23d4b70d5325a2ae4e95"
uuid = "e2ba6199-217a-4e67-a87a-7c52f15ade04"
version = "0.1.1"
[[FillArrays]] [[FillArrays]]
deps = ["LinearAlgebra", "Random", "SparseArrays"] deps = ["LinearAlgebra", "Random", "SparseArrays"]
git-tree-sha1 = "44f561e293987ffc84272cd3d2b14b0b93123d63" git-tree-sha1 = "51cc2f9bc4eb9c6c0e81ec2f779d1085583cc956"
uuid = "1a297f60-69ca-5386-bcde-b61e274b549b" uuid = "1a297f60-69ca-5386-bcde-b61e274b549b"
version = "0.8.10" version = "0.8.7"
[[FixedPointNumbers]] [[FixedPointNumbers]]
git-tree-sha1 = "3ba9ea634d4c8b289d590403b4a06f8e227a6238" git-tree-sha1 = "3ba9ea634d4c8b289d590403b4a06f8e227a6238"
@ -167,27 +162,17 @@ git-tree-sha1 = "f40adc6422f548176bb4351ebd29e4abf773040a"
uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196" uuid = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
version = "0.1.0" version = "0.1.0"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[GPUArrays]] [[GPUArrays]]
deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"] deps = ["AbstractFFTs", "Adapt", "LinearAlgebra", "Printf", "Random", "Serialization"]
git-tree-sha1 = "d887693eb1bd5e1fd573262a978745481895ec7d" git-tree-sha1 = "d586762b08dcda13228df8967119b9cb6f22ade5"
uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7" uuid = "0c68f7d7-f131-5f86-a1c3-88cf8149b2d7"
version = "3.4.1" version = "3.1.0"
[[GPUCompiler]]
deps = ["Cthulhu", "DataStructures", "InteractiveUtils", "LLVM", "Libdl", "TimerOutputs"]
git-tree-sha1 = "5275aa268ecd09640b32560e1eae90c78816e4d1"
uuid = "61eb1bfa-7361-4325-ad38-22787b887f55"
version = "0.2.0"
[[IRTools]] [[IRTools]]
deps = ["InteractiveUtils", "MacroTools", "Test"] deps = ["InteractiveUtils", "MacroTools", "Test"]
git-tree-sha1 = "90ee39f9beaaa186e4968417ea2b8ed5673c91c0" git-tree-sha1 = "1a4355e4b5b50be2311ebb644f34f3306dbd0410"
uuid = "7869d1d1-7146-5819-86e3-90919afe41df" uuid = "7869d1d1-7146-5819-86e3-90919afe41df"
version = "0.3.3" version = "0.3.1"
[[InteractiveUtils]] [[InteractiveUtils]]
deps = ["Markdown"] deps = ["Markdown"]
@ -195,15 +180,15 @@ uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[Juno]] [[Juno]]
deps = ["Base64", "Logging", "Media", "Profile"] deps = ["Base64", "Logging", "Media", "Profile"]
git-tree-sha1 = "a686b0cf235fa3e491b79b4783c2d2382292b436" git-tree-sha1 = "e1ba2a612645b3e07c773c3a208f215745081fe6"
uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d" uuid = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
version = "0.8.2" version = "0.8.1"
[[LLVM]] [[LLVM]]
deps = ["CEnum", "Libdl", "Printf", "Unicode"] deps = ["CEnum", "Libdl", "Printf", "Unicode"]
git-tree-sha1 = "dd3f584c3dbefe39b2a8fbafa1a3b77e31e21255" git-tree-sha1 = "b6b86801ae2f2682e0a4889315dc76b68db2de71"
uuid = "929cbde3-209d-540e-8aea-75f648917ca0" uuid = "929cbde3-209d-540e-8aea-75f648917ca0"
version = "1.5.1" version = "1.3.4"
[[LibGit2]] [[LibGit2]]
deps = ["Printf"] deps = ["Printf"]
@ -262,9 +247,10 @@ uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.3+3" version = "0.5.3+3"
[[OrderedCollections]] [[OrderedCollections]]
git-tree-sha1 = "12ce190210d278e12644bcadf5b21cbdcf225cd3" deps = ["Random", "Serialization", "Test"]
git-tree-sha1 = "c4c13474d23c60d20a67b217f1d7f22a40edf8f1"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.2.0" version = "1.1.0"
[[Pkg]] [[Pkg]]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"] deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
@ -319,15 +305,15 @@ uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]] [[SpecialFunctions]]
deps = ["OpenSpecFun_jll"] deps = ["OpenSpecFun_jll"]
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020" git-tree-sha1 = "e19b98acb182567bcb7b75bb5d9eedf3a3b5ec6c"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b" uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.10.3" version = "0.10.0"
[[StaticArrays]] [[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"] deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "5c06c0aeb81bef54aed4b3f446847905eb6cbda0" git-tree-sha1 = "5a3bcb6233adabde68ebc97be66e95dcb787424c"
uuid = "90137ffa-7385-5640-81b9-e52037218182" uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.12.3" version = "0.12.1"
[[Statistics]] [[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"] deps = ["LinearAlgebra", "SparseArrays"]
@ -345,9 +331,9 @@ uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[TimerOutputs]] [[TimerOutputs]]
deps = ["Printf"] deps = ["Printf"]
git-tree-sha1 = "f458ca23ff80e46a630922c555d838303e4b9603" git-tree-sha1 = "311765af81bbb48d7bad01fb016d9c328c6ede03"
uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f" uuid = "a759f4b9-e2f1-59dc-863e-4aeb61b1ea8f"
version = "0.5.6" version = "0.5.3"
[[TranscodingStreams]] [[TranscodingStreams]]
deps = ["Random", "Test"] deps = ["Random", "Test"]
@ -364,21 +350,21 @@ uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[ZipFile]] [[ZipFile]]
deps = ["Libdl", "Printf", "Zlib_jll"] deps = ["Libdl", "Printf", "Zlib_jll"]
git-tree-sha1 = "254975fef2fc526583bb9b7c9420fe66ffe09f2f" git-tree-sha1 = "8748302cfdec02c4ae9c97b112cf10003f7f767f"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea" uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.9.2" version = "0.9.1"
[[Zlib_jll]] [[Zlib_jll]]
deps = ["Libdl", "Pkg"] deps = ["Libdl", "Pkg"]
git-tree-sha1 = "a2e0d558f6031002e380a90613b199e37a8565bf" git-tree-sha1 = "2f6c3e15e20e036ee0a0965879b31442b7ec50fa"
uuid = "83775a58-1f1d-513f-b197-d71354ab007a" uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.11+10" version = "1.2.11+9"
[[Zygote]] [[Zygote]]
deps = ["AbstractFFTs", "ArrayLayouts", "DiffRules", "FillArrays", "ForwardDiff", "Future", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"] deps = ["AbstractFFTs", "ArrayLayouts", "DiffRules", "FillArrays", "ForwardDiff", "IRTools", "InteractiveUtils", "LinearAlgebra", "MacroTools", "NNlib", "NaNMath", "Random", "Requires", "SpecialFunctions", "Statistics", "ZygoteRules"]
git-tree-sha1 = "707ceea58e2bd0ff3077ab13a92f8355181d3ee4" git-tree-sha1 = "1ccbfbe8930376e31752b812daa2532c723dc332"
uuid = "e88e6eb3-aa80-5325-afca-941959d7151f" uuid = "e88e6eb3-aa80-5325-afca-941959d7151f"
version = "0.4.20" version = "0.4.13"
[[ZygoteRules]] [[ZygoteRules]]
deps = ["MacroTools"] deps = ["MacroTools"]

13
NEWS.md
View File

@ -1,18 +1,5 @@
# v0.11
* Change to `DataLoader`'s constructor [https://github.com/FluxML/Flux.jl/pull/1152]
* Use `DataLoader` with `NamedTuple`s, so that tensors can be accessed by name [https://github.com/FluxML/Flux.jl/pull/1221].
* Error if Dense layers weights and biases are not arrays [https://github.com/FluxML/Flux.jl/pull/1218].
# v0.10.5 # v0.10.5
* Add option for [same padding](https://github.com/FluxML/Flux.jl/pull/901) to conv and pooling layers by setting `pad=SamePad()`. * Add option for [same padding](https://github.com/FluxML/Flux.jl/pull/901) to conv and pooling layers by setting `pad=SamePad()`.
* Added option to set `bias` to [Flux.Zeros](https://github.com/FluxML/Flux.jl/pull/873) to eliminating `bias` from being trained.
* Added `GlobalMaxPool` and `GlobalMeanPool` [layers](https://github.com/FluxML/Flux.jl/pull/950) for performing global pooling operations.
* Added `ClipValue` and `ClipNorm` in this [pr](https://github.com/FluxML/Flux.jl/pull/1133) to `Flux.Optimise` to provide a cleaner API for gradient clipping.
* Added new kwarg-only [constructors](https://github.com/FluxML/Flux.jl/pull/873) for the various convolutional layers.
* Documented the convolutional layer constructors accepting `weight` and `bias` keyword arguments to supply custom arrays for those fields.
* Testing suite improvements now test for gradients of all layers along with GPU support.
* Functors have now moved to [Functors.jl](https://github.com/FluxML/Flux.jl/pull/1174) to allow for their use outside of Flux.
* Added [helper functions](https://github.com/FluxML/Flux.jl/pull/873) `Flux.convfilter` and `Flux.depthwiseconvfilter` to construct weight arrays for convolutions outside of layer constructors so as to not have to depend on the default layers for custom implementations.
# v0.10.0 # v0.10.0
* The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669) * The default AD engine has switched from [Tracker to Zygote.jl](https://github.com/FluxML/Flux.jl/pull/669)

View File

@ -1,6 +1,6 @@
name = "Flux" name = "Flux"
uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c" uuid = "587475ba-b771-5e3f-ad9e-33799f191a9c"
version = "0.11.0-DEV" version = "0.10.5"
[deps] [deps]
AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c" AbstractTrees = "1520ce14-60c1-5f80-bbc7-55ef81b5835c"
@ -11,7 +11,6 @@ CuArrays = "3a865a2d-5b23-5a0f-bc46-62713ec82fae"
DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab" DelimitedFiles = "8bb1440f-4735-579b-a4ab-409b98df4dab"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196" Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d" Juno = "e5e0dc1b-0480-54bc-9374-aad01c23163d"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09" MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd" NNlib = "872c559c-99b0-510c-b3b7-b6c96a88d5cd"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f" Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
@ -27,11 +26,10 @@ Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"
[compat] [compat]
AbstractTrees = "0.2, 0.3" AbstractTrees = "0.2, 0.3"
Adapt = "1, 2.0" Adapt = "1"
CodecZlib = "0.5, 0.6, 0.7" CodecZlib = "0.5, 0.6, 0.7"
Colors = "0.8, 0.9, 0.10, 0.11, 0.12" Colors = "0.8, 0.9, 0.10, 0.11, 0.12"
CuArrays = "2" CuArrays = "2"
Functors = "0.1"
Juno = "0.5, 0.6, 0.7, 0.8" Juno = "0.5, 0.6, 0.7, 0.8"
MacroTools = "0.3, 0.4, 0.5" MacroTools = "0.3, 0.4, 0.5"
NNlib = "0.6" NNlib = "0.6"

View File

@ -7,15 +7,15 @@ julia> using Flux: onehot, onecold
julia> onehot(:b, [:a, :b, :c]) julia> onehot(:b, [:a, :b, :c])
3-element Flux.OneHotVector: 3-element Flux.OneHotVector:
0 false
1 true
0 false
julia> onehot(:c, [:a, :b, :c]) julia> onehot(:c, [:a, :b, :c])
3-element Flux.OneHotVector: 3-element Flux.OneHotVector:
0 false
0 false
1 true
``` ```
The inverse is `onecold` (which can take a general probability distribution, as well as just booleans). The inverse is `onecold` (which can take a general probability distribution, as well as just booleans).

View File

@ -19,7 +19,7 @@ Affine{Array{Float64,2},Array{Float64,1}}([0.66722 0.774872 0.249809; 0.843321 0
julia> Flux.params(a) # default behavior julia> Flux.params(a) # default behavior
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955]]) Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297], [0.42394, 0.0170927, 0.544955]])
julia> Flux.trainable(a::Affine) = (a.W,) julia> Flux.trainable(a::Affine) = (a.W, a.b,)
julia> Flux.params(a) julia> Flux.params(a)
Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297]]) Params([[0.66722 0.774872 0.249809; 0.843321 0.403843 0.429232; 0.683525 0.662455 0.065297]])

View File

@ -20,11 +20,7 @@ GlobalMeanPool
DepthwiseConv DepthwiseConv
ConvTranspose ConvTranspose
CrossCor CrossCor
SamePad
flatten flatten
Flux.Zeros
Flux.convfilter
Flux.depthwiseconvfilter
``` ```
## Recurrent Layers ## Recurrent Layers

View File

@ -39,7 +39,7 @@ E.g. the following will have run into the same problem as above:
leaky_tanh(x) = 0.01*x + tanh(x) leaky_tanh(x) = 0.01*x + tanh(x)
``` ```
While one could change the activation function (e.g. to use `0.01f0*x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`: While one could change the activation function (e.g. to use `0.01f0x`), the idiomatic (and safe way) to avoid type casts whenever inputs changes is to use `oftype`:
``` ```
leaky_tanh(x) = oftype(x/1, 0.01)*x + tanh(x) leaky_tanh(x) = oftype(x/1, 0.01)*x + tanh(x)
``` ```

View File

@ -140,16 +140,3 @@ ExpDecay
InvDecay InvDecay
WeightDecay WeightDecay
``` ```
## Gradient Clipping
Gradient clipping is useful for training recurrent neural networks, which have a tendency to suffer from the exploding gradient problem. An example usage is
```julia
opt = Optimiser(ClipValue(1e-3), ADAM(1e-3))
```
```@docs
ClipValue
ClipNorm
```

View File

@ -142,7 +142,7 @@ function my_custom_train!(loss, ps, data, opt)
for d in data for d in data
gs = gradient(ps) do gs = gradient(ps) do
training_loss = loss(d...) training_loss = loss(d...)
# Insert whatever code you want here that needs Training loss, e.g. logging # Insert what ever code you want here that needs Training loss, e.g. logging
return training_loss return training_loss
end end
# insert what ever code you want here that needs gradient # insert what ever code you want here that needs gradient

View File

@ -3,8 +3,7 @@ module Flux
# Zero Flux Given # Zero Flux Given
using Base: tail using Base: tail
using Statistics, Random, LinearAlgebra using Zygote, MacroTools, Juno, Reexport, Statistics, Random
using Zygote, MacroTools, Juno, Reexport
using MacroTools: @forward using MacroTools: @forward
@reexport using NNlib @reexport using NNlib
using Zygote: Params, @adjoint, gradient, pullback, @nograd using Zygote: Params, @adjoint, gradient, pullback, @nograd
@ -21,8 +20,7 @@ using .Optimise
using .Optimise: @epochs using .Optimise: @epochs
export Descent, ADAM, Momentum, Nesterov, RMSProp, export Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM,
ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay, ADAMW, RADAM, InvDecay, ExpDecay, WeightDecay
ClipValue, ClipNorm
using CuArrays using CuArrays

View File

@ -51,6 +51,4 @@ export Iris
include("housing.jl") include("housing.jl")
export Housing export Housing
@deprecate DataLoader(x...; kws...) DataLoader(x; kws...)
end end

View File

@ -1,7 +1,7 @@
# Adapted from Knet's src/data.jl (author: Deniz Yuret) # Adapted from Knet's src/data.jl (author: Deniz Yuret)
struct DataLoader{D} struct DataLoader
data::D data
batchsize::Int batchsize::Int
nobs::Int nobs::Int
partial::Bool partial::Bool
@ -11,20 +11,21 @@ struct DataLoader{D}
end end
""" """
DataLoader(data; batchsize=1, shuffle=false, partial=true) DataLoader(data...; batchsize=1, shuffle=false, partial=true)
An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations An object that iterates over mini-batches of `data`, each mini-batch containing `batchsize` observations
(except possibly the last one). (except possibly the last one).
Takes as input a single data tensor, or a tuple (or a named tuple) of tensors. Takes as input one or more data tensors, e.g. X in unsupervised learning, X and Y in
The last dimension in each tensor is considered to be the observation dimension. supervised learning. The last dimension in each tensor is considered to be the observation
dimension.
If `shuffle=true`, shuffles the observations each time iterations are re-started. If `shuffle=true`, shuffles the observations each time iterations are re-started.
If `partial=false`, drops the last mini-batch if it is smaller than the batchsize. If `partial=false`, drops the last mini-batch if it is smaller than the batchsize.
The original data is preserved in the `data` field of the DataLoader. The original data is preserved as a tuple in the `data` field of the DataLoader.
Usage example: Example usage:
Xtrain = rand(10, 100) Xtrain = rand(10, 100)
train_loader = DataLoader(Xtrain, batchsize=2) train_loader = DataLoader(Xtrain, batchsize=2)
@ -36,16 +37,9 @@ Usage example:
train_loader.data # original dataset train_loader.data # original dataset
# similar, but yielding tuples
train_loader = DataLoader((Xtrain,), batchsize=2)
for (x,) in train_loader
@assert size(x) == (10, 2)
...
end
Xtrain = rand(10, 100) Xtrain = rand(10, 100)
Ytrain = rand(100) Ytrain = rand(100)
train_loader = DataLoader((Xtrain, Ytrain), batchsize=2, shuffle=true) train_loader = DataLoader(Xtrain, Ytrain, batchsize=2, shuffle=true)
for epoch in 1:100 for epoch in 1:100
for (x, y) in train_loader for (x, y) in train_loader
@assert size(x) == (10, 2) @assert size(x) == (10, 2)
@ -57,26 +51,26 @@ Usage example:
# train for 10 epochs # train for 10 epochs
using IterTools: ncycle using IterTools: ncycle
Flux.train!(loss, ps, ncycle(train_loader, 10), opt) Flux.train!(loss, ps, ncycle(train_loader, 10), opt)
# can use NamedTuple to name tensors
train_loader = DataLoader((images=Xtrain, labels=Ytrain), batchsize=2, shuffle=true)
for datum in train_loader
@assert size(datum.images) == (10, 2)
@assert size(datum.labels) == (2,)
end
""" """
function DataLoader(data; batchsize=1, shuffle=false, partial=true) function DataLoader(data...; batchsize=1, shuffle=false, partial=true)
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
batchsize > 0 || throw(ArgumentError("Need positive batchsize")) batchsize > 0 || throw(ArgumentError("Need positive batchsize"))
n = _nobs(data) nx = size(data[1])[end]
if n < batchsize for i=2:length(data)
@warn "Number of observations less than batchsize, decreasing the batchsize to $n" nx != size(data[i])[end] && throw(DimensionMismatch("All data should contain same number of observations"))
batchsize = n
end end
imax = partial ? n : n - batchsize + 1 if nx < batchsize
DataLoader(data, batchsize, n, partial, imax, [1:n;], shuffle) @warn "Number of data points less than batchsize, decreasing the batchsize to $nx"
batchsize = nx
end
imax = partial ? nx : nx - batchsize + 1
ids = 1:min(nx, batchsize)
DataLoader(data, batchsize, nx, partial, imax, [1:nx;], shuffle)
end end
getdata(x::AbstractArray, ids) = x[(Base.Colon() for _=1:ndims(x)-1)..., ids]
@propagate_inbounds function Base.iterate(d::DataLoader, i=0) # returns data in d.indices[i+1:i+batchsize] @propagate_inbounds function Base.iterate(d::DataLoader, i=0) # returns data in d.indices[i+1:i+batchsize]
i >= d.imax && return nothing i >= d.imax && return nothing
if d.shuffle && i == 0 if d.shuffle && i == 0
@ -84,7 +78,11 @@ end
end end
nexti = min(i + d.batchsize, d.nobs) nexti = min(i + d.batchsize, d.nobs)
ids = d.indices[i+1:nexti] ids = d.indices[i+1:nexti]
batch = _getobs(d.data, ids) if length(d.data) == 1
batch = getdata(d.data[1], ids)
else
batch = ((getdata(x, ids) for x in d.data)...,)
end
return (batch, nexti) return (batch, nexti)
end end
@ -92,19 +90,3 @@ function Base.length(d::DataLoader)
n = d.nobs / d.batchsize n = d.nobs / d.batchsize
d.partial ? ceil(Int,n) : floor(Int,n) d.partial ? ceil(Int,n) : floor(Int,n)
end end
_nobs(data::AbstractArray) = size(data)[end]
function _nobs(data::Union{Tuple, NamedTuple})
length(data) > 0 || throw(ArgumentError("Need at least one data input"))
n = _nobs(data[1])
if !all(x -> _nobs(x) == n, Base.tail(data))
throw(DimensionMismatch("All data should contain same number of observations"))
end
return n
end
_getobs(data::AbstractArray, i) = data[ntuple(i -> Colon(), Val(ndims(data) - 1))..., i]
_getobs(data::Union{Tuple, NamedTuple}, i) = map(Base.Fix2(_getobs, i), data)
Base.eltype(::DataLoader{D}) where D = D

View File

@ -24,7 +24,7 @@ testmode!(m, mode = true) = m
trainmode!(m, mode = true) trainmode!(m, mode = true)
Set a layer of model's train mode (see below). Set a layer of model's train mode (see below).
Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)`). Symmetric to [`testmode!`](@ref) (i.e. `trainmode!(m, mode) == testmode!(m, !mode)).
_Note_: if you manually set a model into train mode, you need to manually place _Note_: if you manually set a model into train mode, you need to manually place
it into test mode during testing phase. it into test mode during testing phase.

View File

@ -102,7 +102,7 @@ julia> d(rand(5))
-0.16210233 -0.16210233
0.12311903``` 0.12311903```
""" """
struct Dense{F,S<:AbstractArray,T<:AbstractArray} struct Dense{F,S,T}
W::S W::S
b::T b::T
σ::F σ::F

View File

@ -132,7 +132,7 @@ end
function (c::Conv)(x::AbstractArray) function (c::Conv)(x::AbstractArray)
# TODO: breaks gpu broadcast :( # TODO: breaks gpu broadcast :(
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
σ, b = c.σ, reshape(c.bias, ntuple(_->1, length(c.stride))..., :, 1) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
σ.(conv(x, c.weight, cdims) .+ b) σ.(conv(x, c.weight, cdims) .+ b)
end end
@ -222,7 +222,7 @@ end
function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; function ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
init = glorot_uniform, stride = 1, pad = 0, dilation = 1, init = glorot_uniform, stride = 1, pad = 0, dilation = 1,
weight = convfilter(k, reverse(ch), init = init), bias = zeros(ch[2])) where N weight = convfilter(k, reverse(ch), init = init), bias = zeros(ch[2])) where N
ConvTranspose(weight, bias, σ, ConvTranspose(weight, bias, σ,
stride = stride, pad = pad, dilation = dilation) stride = stride, pad = pad, dilation = dilation)
end end

View File

@ -46,10 +46,9 @@ given the prediction `ŷ` and true values `y`.
Huber loss = | Huber loss = |
| δ * (| - y| - 0.5 * δ), otherwise | δ * (| - y| - 0.5 * δ), otherwise
""" """
#TODO: remove dropgrad when Zygote can handle this function with CuArrays
function huber_loss(, y; δ=eltype()(1)) function huber_loss(, y; δ=eltype()(1))
abs_error = abs.( .- y) abs_error = abs.( .- y)
temp = Zygote.dropgrad(abs_error .< δ) temp = abs_error .< δ
x = eltype()(0.5) x = eltype()(0.5)
hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y) hub_loss = sum(((abs_error.^2) .* temp) .* x .+ δ*(abs_error .- x*δ) .* (1 .- temp)) * 1 // length(y)
end end
@ -133,7 +132,7 @@ CuArrays.@cufunc binarycrossentropy(ŷ, y; ϵ=eps(ŷ)) = -y*log(ŷ + ϵ) - (1
logitbinarycrossentropy(ŷ, y) logitbinarycrossentropy(ŷ, y)
`logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to `logitbinarycrossentropy(ŷ, y)` is mathematically equivalent to
[`Flux.binarycrossentropy(σ(ŷ), y)`](@ref) but it is more numerically stable. [`Flux.binarycrossentropy(σ(log(ŷ)), y)`](@ref) but it is more numerically stable.
See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref) See also: [`Flux.crossentropy`](@ref), [`Flux.logitcrossentropy`](@ref), [`Flux.binarycrossentropy`](@ref)

View File

@ -27,8 +27,7 @@ Base.getindex(xs::OneHotMatrix, ::Colon, ::Colon) = OneHotMatrix(xs.height, copy
Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data) Base.getindex(xs::OneHotMatrix, i::Integer, ::Colon) = map(x -> x[i], xs.data)
# remove workaround when https://github.com/JuliaGPU/CuArrays.jl/issues/676 is fixed A::AbstractMatrix * B::OneHotMatrix = A[:, map(x->x.ix, B.data)]
A::AbstractMatrix * B::OneHotMatrix = A[:, cpu(map(x->x.ix, B.data))]
Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(length(x), [x, xs...]) Base.hcat(x::OneHotVector, xs::OneHotVector...) = OneHotMatrix(length(x), [x, xs...])
@ -49,7 +48,7 @@ cudaconvert(x::OneHotMatrix{<:CuArray}) = OneHotMatrix(x.height, cudaconvert(x.d
Create a `OneHotVector` with its `l`-th element `true` based on the Create a `OneHotVector` with its `l`-th element `true` based on the
possible set of `labels`. possible set of `labels`.
If `unk` is given, return `onehot(unk, labels)` if the input label `l` is not found If `unk` is given, return `onehot(unk, labels)` if the input label `l` is not found
in `labels`; otherwise, it will raise an error. in `labels`; otherwise it will error.
# Examples # Examples
```jldoctest ```jldoctest

View File

@ -1,12 +1,9 @@
module Optimise module Optimise
using LinearAlgebra
export train!, update!, export train!, update!,
Descent, ADAM, Momentum, Nesterov, RMSProp, Descent, ADAM, Momentum, Nesterov, RMSProp,
ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,RADAM, ADAGrad, AdaMax, ADADelta, AMSGrad, NADAM, ADAMW,RADAM,
InvDecay, ExpDecay, WeightDecay, stop, Optimiser, InvDecay, ExpDecay, WeightDecay, stop, Optimiser
ClipValue, ClipNorm
include("optimisers.jl") include("optimisers.jl")
include("train.jl") include("train.jl")

View File

@ -509,7 +509,7 @@ function apply!(o::ExpDecay, x, Δ)
η, s, decay = o.eta, o.step, o.decay η, s, decay = o.eta, o.step, o.decay
n = o.current[x] = get(o.current, x, 0) + 1 n = o.current[x] = get(o.current, x, 0) + 1
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1 if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
η = max(η * decay, o.clip) η = max(η * decay^(s / n), o.clip)
o.eta = η o.eta = η
end end
@. Δ *= η @. Δ *= η
@ -533,31 +533,3 @@ function apply!(o::WeightDecay, x, Δ)
wd = o.wd wd = o.wd
@. Δ += wd * x @. Δ += wd * x
end end
"""
ClipValue(thresh)
Clip gradients when their absolute value exceeds `thresh`.
"""
mutable struct ClipValue{T}
thresh::T
end
apply!(o::ClipValue, x, Δ) = clamp!(Δ, -o.thresh, o.thresh)
"""
ClipNorm(thresh)
Clip gradients when their L2 norm exceeds `thresh`.
"""
mutable struct ClipNorm{T}
thresh::T
end
function apply!(o::ClipNorm, x, Δ)
Δnrm = norm(Δ)
if Δnrm > o.thresh
rmul!(Δ, o.thresh / Δnrm)
end
return Δ
end

View File

@ -68,7 +68,8 @@ and compute the gradient of `loss(d)`.
A callback is given with the keyword argument `cb`. For example, this will print A callback is given with the keyword argument `cb`. For example, this will print
"training" every 10 seconds (using [`Flux.throttle`](@ref)): "training" every 10 seconds (using [`Flux.throttle`](@ref)):
train!(loss, params, data, opt, cb = throttle(() -> println("training"), 10)) train!(loss, params, data, opt,
cb = throttle(() -> println("training"), 10))
The callback can call [`Flux.stop`](@ref) to interrupt the training loop. The callback can call [`Flux.stop`](@ref) to interrupt the training loop.

View File

@ -246,10 +246,6 @@ function _restructure(m, xs)
end end
end end
@adjoint function _restructure(m, xs)
_restructure(m, xs), dm -> (nothing,destructure(dm)[1])
end
""" """
destructure(m) destructure(m)

View File

@ -69,7 +69,6 @@ if CuArrays.has_cudnn()
@info "Testing Flux/CUDNN" @info "Testing Flux/CUDNN"
include("cudnn.jl") include("cudnn.jl")
include("curnn.jl") include("curnn.jl")
include("layers.jl")
else else
@warn "CUDNN unavailable, not testing GPU DNN support" @warn "CUDNN unavailable, not testing GPU DNN support"
end end

View File

@ -1,98 +0,0 @@
# Test layers and data/model movements on and off the GPU
# Add tests for layers and their gradients on the GPU
# Most of the forward passes should be fine being applied
# to bitstype objects, but this gives higher coverage for our use-cases
# Check that getting the gradients does not throw
# generic movement tests
@testset "Basic GPU Movement" begin
@test gradient(x -> sum(gpu(x)), rand(3,3)) isa Tuple
@test gradient(x -> sum(cpu(x)), gpu(rand(3,3))) isa Tuple
end
# TODO: These layers get into scalar indexing
# `AlphaDropout` throws a compilation error on GPUs,
# whereas, the rest are scalar indexing issues.
const BROKEN_LAYERS = [DepthwiseConv,
AlphaDropout,
InstanceNorm,
GroupNorm]
function gradtest(name::String, layers::Vector, xs = nothing, args...)
isnothing(xs) && error("Missing input to test the layers against.")
@testset "$name GPU grad tests" begin
for layer in layers
@testset "$layer GPU grad test" begin
l = gpu(layer(args...))
xs = gpu(xs)
if any(x -> isa(l, x), BROKEN_LAYERS)
ps = Flux.params(l)
@test_broken gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
else
ps = Flux.params(l)
@test gradient(() -> sum(l(xs)), ps) isa Flux.Zygote.Grads
gs = gradient(() -> sum(l(xs)), ps)
# Handle pooling layers
if !isempty(ps)
@test gs[first(ps)] isa Flux.CuArrays.CuArray
end
end
end
end
end
end
# Repeats from Conv, CrossCor
r = rand(Float32, 28, 28, 1, 1)
conv_layers = [Conv, ConvTranspose, CrossCor, DepthwiseConv]
gradtest("Conv", conv_layers, r, (2,2), 1=>3)
pooling_layers = [MaxPool, MeanPool]
gradtest("Pooling", pooling_layers, r, (2,2))
dropout_layers = [Dropout, AlphaDropout]
gradtest("Dropout", dropout_layers, r, 0.5f0)
norm_layers = [LayerNorm, BatchNorm]
gradtest("Normalising", norm_layers, rand(Float32, 28,28,3,1), 1)
instancenorm = [InstanceNorm]
gradtest("InstanceNorm", instancenorm, r, 1)
groupnorm = [GroupNorm]
gradtest("GroupNorm", groupnorm, rand(Float32, 28,28,3,1), 3, 1)
const stateless_layers = [Flux.mse,
Flux.crossentropy,
Flux.logitcrossentropy,
Flux.normalise]
const stateless_layers_broadcasted = [Flux.binarycrossentropy,
Flux.logitbinarycrossentropy]
function stateless_gradtest(f, args...)
@test gradient((args...) -> sum(f(args...)), args...)[1] isa CuArray
end
function stateless_gradtest_broadcasted(f, args...)
@test gradient((args...) -> sum(f.(args...)), args...)[1] isa CuArray
end
@testset "Stateless GPU grad tests" begin
x = gpu(rand(3,3))
y = gpu(rand(3,3))
for layer in stateless_layers
if layer == Flux.normalise
stateless_gradtest(layer, x)
else
stateless_gradtest(layer, x, y)
end
end
for layer in stateless_layers_broadcasted
stateless_gradtest_broadcasted(layer, x, y)
end
end

View File

@ -3,34 +3,20 @@
Y = [1:5;] Y = [1:5;]
d = DataLoader(X, batchsize=2) d = DataLoader(X, batchsize=2)
@inferred first(d)
batches = collect(d) batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 3 @test length(batches) == 3
@test batches[1] == X[:,1:2] @test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4] @test batches[2] == X[:,3:4]
@test batches[3] == X[:,5:5] @test batches[3] == X[:,5:5]
d = DataLoader(X, batchsize=2, partial=false) d = DataLoader(X, batchsize=2, partial=false)
@inferred first(d)
batches = collect(d) batches = collect(d)
@test eltype(batches) == eltype(d) == typeof(X)
@test length(batches) == 2 @test length(batches) == 2
@test batches[1] == X[:,1:2] @test batches[1] == X[:,1:2]
@test batches[2] == X[:,3:4] @test batches[2] == X[:,3:4]
d = DataLoader((X,), batchsize=2, partial=false) d = DataLoader(X, Y, batchsize=2)
@inferred first(d)
batches = collect(d) batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X)}
@test length(batches) == 2
@test batches[1] == (X[:,1:2],)
@test batches[2] == (X[:,3:4],)
d = DataLoader((X, Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == Tuple{typeof(X), typeof(Y)}
@test length(batches) == 3 @test length(batches) == 3
@test length(batches[1]) == 2 @test length(batches[1]) == 2
@test length(batches[2]) == 2 @test length(batches[2]) == 2
@ -42,22 +28,6 @@
@test batches[3][1] == X[:,5:5] @test batches[3][1] == X[:,5:5]
@test batches[3][2] == Y[5:5] @test batches[3][2] == Y[5:5]
# test with NamedTuple
d = DataLoader((x=X, y=Y), batchsize=2)
@inferred first(d)
batches = collect(d)
@test eltype(batches) == eltype(d) == NamedTuple{(:x, :y), Tuple{typeof(X), typeof(Y)}}
@test length(batches) == 3
@test length(batches[1]) == 2
@test length(batches[2]) == 2
@test length(batches[3]) == 2
@test batches[1][1] == batches[1].x == X[:,1:2]
@test batches[1][2] == batches[1].y == Y[1:2]
@test batches[2][1] == batches[2].x == X[:,3:4]
@test batches[2][2] == batches[2].y == Y[3:4]
@test batches[3][1] == batches[3].x == X[:,5:5]
@test batches[3][2] == batches[3].y == Y[5:5]
# test interaction with `train!` # test interaction with `train!`
θ = ones(2) θ = ones(2)
X = zeros(2, 10) X = zeros(2, 10)
@ -71,7 +41,7 @@
X = ones(2, 10) X = ones(2, 10)
Y = fill(2, 10) Y = fill(2, 10)
loss(x, y) = sum((y - x'*θ).^2) loss(x, y) = sum((y - x'*θ).^2)
d = DataLoader((X, Y)) d = DataLoader(X, Y)
Flux.train!(loss, [θ], ncycle(d, 10), Descent(0.1)) Flux.train!(loss, [θ], ncycle(d, 10), Descent(0.1))
@test norm(θ .- 1) < 1e-10 @test norm(θ .- 1) < 1e-10
end end

View File

@ -28,14 +28,6 @@ import Flux: activations
end end
@testset "Dense" begin @testset "Dense" begin
@testset "constructors" begin
@test size(Dense(10, 100).W) == (100, 10)
@test Dense(rand(100,10), rand(10)).σ == identity
@test_throws MethodError Dense(10, 10.5)
@test_throws MethodError Dense(10, 10.5, tanh)
end
@test length(Dense(10, 5)(randn(10))) == 5 @test length(Dense(10, 5)(randn(10))) == 5
@test_throws DimensionMismatch Dense(10, 5)(randn(1)) @test_throws DimensionMismatch Dense(10, 5)(randn(1))
@test_throws MethodError Dense(10, 5)(1) # avoid broadcasting @test_throws MethodError Dense(10, 5)(1) # avoid broadcasting
@ -45,6 +37,7 @@ import Flux: activations
@test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2) @test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2)
@test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1) @test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1)
@test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20] @test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20]
end end
@testset "Diagonal" begin @testset "Diagonal" begin

View File

@ -57,57 +57,35 @@ end
end end
@testset "ExpDecay" begin @testset "ExpDecay" begin
@testset "Sanity Check" begin
o = ExpDecay(0.2, 0.5, 1, 1e-3)
p = [0.0]
steps = 1:8
eta_expected = @. max(o.eta * 0.5 ^ steps, o.clip)
eta_actual = [Optimise.apply!(o, p, [1.0])[1] for _ in steps]
@test eta_actual == eta_expected
end
w = randn(10, 10)
o = ExpDecay(0.1, 0.1, 1000, 1e-4)
w1 = randn(10,10)
loss(x) = Flux.mse(w*x, w1*x)
flag = 1
decay_steps = []
for t = 1:10^5
prev_eta = o.eta
θ = Params([w1])
x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
prev_grad = collect(θ̄[w1])
delta = Optimise.apply!(o, w1, θ̄[w1])
w1 .-= delta
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
array = fill(o.eta, size(prev_grad))
if array .* prev_grad != delta
flag = 0
end
end
@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value (1e-4) after 4000 steps (decay by 0.1 every 1000 steps starting at 0.1).
ground_truth = []
for i in 1:4
push!(ground_truth, 1000*i) # Expected decay steps for this example.
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end
@testset "Clipping" begin
w = randn(10, 10) w = randn(10, 10)
loss(x) = sum(w * x) o = ExpDecay(0.1, 0.1, 1000, 1e-4)
θ = Params([w]) w1 = randn(10,10)
x = 1000 * randn(10) loss(x) = Flux.mse(w*x, w1*x)
= gradient(() -> loss(x), θ)[w] flag = 1
w̄_value = Optimise.apply!(ClipValue(1.0), w, copy()) decay_steps = []
@test all(w̄_value .<= 1) for t = 1:10^5
w̄_norm = Optimise.apply!(ClipNorm(1.0), w, copy()) prev_eta = o.eta
@test norm(w̄_norm) <= 1 θ = Params([w1])
end x = rand(10)
θ̄ = gradient(() -> loss(x), θ)
prev_grad = collect(θ̄[w1])
delta = Optimise.apply!(o, w1, θ̄[w1])
w1 .-= delta
new_eta = o.eta
if new_eta != prev_eta
push!(decay_steps, t)
end
array = fill(o.eta, size(prev_grad))
if array .* prev_grad != delta
flag = 0
end
end
@test flag == 1
# Test to check if decay happens at decay steps. Eta reaches clip value eventually.
ground_truth = []
for i in 1:11
push!(ground_truth, 1000*i) # Expected decay steps for this example.
end
@test decay_steps == ground_truth
@test o.eta == o.clip
end

View File

@ -2,45 +2,49 @@ using Flux
using Flux.Data using Flux.Data
using Test using Test
using Random, Statistics, LinearAlgebra using Random, Statistics, LinearAlgebra
using Documenter
using IterTools: ncycle using IterTools: ncycle
Random.seed!(0) Random.seed!(0)
@testset "Utils" begin @testset "Flux" begin
include("utils.jl")
end
@testset "Onehot" begin @testset "Utils" begin
include("onehot.jl") include("utils.jl")
end end
@testset "Optimise" begin @testset "Onehot" begin
include("optimise.jl") include("onehot.jl")
end end
@testset "Data" begin @testset "Optimise" begin
include("data.jl") include("optimise.jl")
end end
@testset "Layers" begin @testset "Data" begin
include("layers/basic.jl") include("data.jl")
include("layers/normalisation.jl") end
include("layers/stateless.jl")
include("layers/conv.jl") @testset "Layers" begin
end include("layers/basic.jl")
include("layers/normalisation.jl")
@testset "CUDA" begin include("layers/stateless.jl")
if Flux.use_cuda[] include("layers/conv.jl")
include("cuda/cuda.jl") end
else
@warn "CUDA unavailable, not testing GPU support" @testset "CUDA" begin
if Flux.use_cuda[]
include("cuda/cuda.jl")
else
@warn "CUDA unavailable, not testing GPU support"
end
end end
end
@static if VERSION >= v"1.4"
using Documenter
@testset "Docs" begin @testset "Docs" begin
DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true) if VERSION >= v"1.4"
doctest(Flux) DocMeta.setdocmeta!(Flux, :DocTestSetup, :(using Flux); recursive=true)
doctest(Flux)
end
end end
end
end # testset Flux