using Flux using Base: @get! using MacroTools: @forward const ϵ = 1e-8 # TODO: should use weak refs """ Descent(η) Classic gradient descent optimiser with learning rate `η`. For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`. """ mutable struct Descent eta::Float64 end Descent() = Descent(0.1) function apply!(o::Descent, x, Δ) Δ .*= o.eta end """ Momentum(params, η = 0.01; ρ = 0.9) Gradient descent with learning rate `η` and momentum `ρ`. """ mutable struct Momentum eta::Float64 rho::Float64 velocity::IdDict end Momentum(η = 0.01, ρ = 0.9) = Momentum(η, ρ, IdDict()) function apply!(o::Momentum, x, Δ) η, ρ = o.eta, o.rho v = get!(o.velocity, x, zero(x))::typeof(data(x)) @. v = ρ * v - η * Δ @. Δ = -v end """ Nesterov(eta, ρ = 0.9) Gradient descent with learning rate `η` and Nesterov momentum `ρ`. """ mutable struct Nesterov eta::Float64 rho::Float64 velocity::IdDict end Nesterov(η = 0.001, ρ = 0.9) = Nesterov(η, ρ, IdDict()) function apply!(o::Nesterov, x, Δ) η, ρ = o.eta, o.rho v = get!(o.velocity, x, zero(x))::typeof(data(x)) d = @. ρ^2 * v - (1+ρ) * η * Δ @. v = ρ*v - η*Δ @. Δ = -d end """ RMSProp(η = 0.001, ρ = 0.9) [RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) optimiser. Parameters other than learning rate don't need tuning. Often a good choice for recurrent networks. """ mutable struct RMSProp eta::Float64 rho::Float64 acc::IdDict end RMSProp(η = 0.001, ρ = 0.9) = RMSProp(η, ρ, IdDict()) function apply!(o::RMSProp, x, Δ) η, ρ = o.eta, o.rho acc = get!(o.acc, x, zero(x))::typeof(data(x)) @. acc = ρ * acc + (1 - ρ) * Δ^2 @. Δ *= η / (√acc + ϵ) end """ ADAM(η = 0.001, β = (0.9, 0.999)) [ADAM](https://arxiv.org/abs/1412.6980v8) optimiser. """ mutable struct ADAM eta::Float64 beta::Tuple{Float64,Float64} state::IdDict end ADAM(η = 0.001, β = (0.9, 0.999)) = ADAM(η, β, IdDict()) function apply!(o::ADAM, x, Δ) η, β = o.eta, o.beta mt, vt, βp = get!(o.state, x, (zero(x), zero(x), β)) @. mt = β[1] * mt + (1 - β[1]) * Δ @. vt = β[2] * vt + (1 - β[2]) * Δ^2 @. Δ = mt / (1 - βp[1]) / (√(vt / (1 - βp[2])) + ϵ) * η o.state[x] = (mt, vt, βp .* β) return Δ end """ AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08) [AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on the ∞-norm. """ mutable struct AdaMax eta::Float64 beta::Tuple{Float64,Float64} state::IdDict end AdaMax(η = 0.001, β = (0.9, 0.999)) = AdaMax(η, β, IdDict()) function apply!(o::AdaMax, x, Δ) η, β = o.eta, o.beta mt, ut, βp = get!(o.state, x, (zero(x), zero(x), β)) @. mt = β[1] * mt + (1 - β[1]) * Δ @. ut = max(β[2] * ut, abs(Δ)) @. Δ = (η/(1 - βp[1])) * mt/(ut + ϵ) o.state[x] = (mt, ut, βp .* β) return Δ end """ ADAGrad(η = 0.1; ϵ = 1e-8) [ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser. Parameters don't need tuning. """ mutable struct ADAGrad eta::Float64 acc::IdDict end ADAGrad(η = 0.1) = ADAGrad(η, IdDict()) function apply!(o::ADAGrad, x, Δ) η = o.eta acc = get!(o.acc, x, fill(ϵ, size(x)))::typeof(data(x)) @. acc += Δ^2 @. Δ *= η / (√acc + ϵ) end """ ADADelta(ρ = 0.9, ϵ = 1e-8) [ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need tuning. """ mutable struct ADADelta rho::Float64 state::IdDict end ADADelta(ρ = 0.9) = ADADelta(ρ, IdDict()) function apply!(o::ADADelta, x, Δ) ρ = o.rho acc, Δacc = get!(o.state, x, (zero(x), zero(x))) @. acc = ρ * acc + (1 - ρ) * Δ^2 @. Δ *= √Δacc/ (√acc + ϵ) @. Δacc = ρ * Δacc + (1 - ρ) * Δ^2 return Δ end """ AMSGrad(η = 0.001, β = (0.9, 0.999)) [AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need tuning. """ mutable struct AMSGrad eta::Float64 beta::Tuple{Float64, Float64} state::IdDict end AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict()) function apply!(o::AMSGrad, x, Δ) η, β = o.eta, o.beta mt, vt, v̂t = get!(o.state, x, (fill(ϵ, size(x)), fill(ϵ, size(x)), fill(ϵ, size(x)))) @. mt = β[1] * mt + (1 - β[1]) * Δ @. vt = β[2] * vt + (1 - β[2]) * Δ ^ 2 @. v̂t = max.(v̂t, vt) @. Δ = η * mt / (√v̂t + ϵ) end """ NADAM(η = 0.001, β = (0.9, 0.999)) [NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser. Parameters don't need tuning. """ mutable struct NADAM eta::Float64 beta::Tuple{Float64, Float64} state::IdDict end NADAM(η = 0.001, β = (0.9, 0.999)) = NADAM(η, β, IdDict()) function apply!(o::NADAM, x, Δ) η, β = o.eta, o.beta β1p, β2p = o.beta mt, vt = get!(o.state, x, (zero(x), zero(x))) @. mt = β[1] * mt + (1 - β[1]) * Δ @. vt = β[2] * vt + (1 - β[2]) * Δ^2 @. Δ = (β[1] * mt / (1 - β[1] * β1p) + (1 - β[1]) * Δ / (1 - β1p)) / (√(vt * β[2] / (1 - β2p)) + ϵ) * η o.state[x] = (mt, vt, (β1p * β[1], β2p * β[2])) return Δ end """ ADAMW((η = 0.001, β = (0.9, 0.999), decay = 0) [ADAMW](https://arxiv.org/abs/1711.05101) fixing weight decay regularization in Adam. """ ADAMW(η = 0.001, β = (0.9, 0.999), decay = 0) = Optimiser(ADAM(η, β), WeightDecay(decay)) # Compose optimizers """ Optimiser(a, b, c...) Combine several optimisers into one; each optimiser produces a modified gradient that will be fed into the next, and this is finally applied to the parameter as usual. """ mutable struct Optimiser os::Vector{Any} end Optimiser(o...) = Optimiser(Any[o...]) @forward Optimiser.os Base.getindex, Base.first, Base.last, Base.lastindex, Base.push!, Base.setindex! @forward Optimiser.os Base.iterate Base.getindex(c::Optimiser, i::AbstractArray) = Optimiser(c.os[i]...) function apply!(o::Optimiser, x, Δ) for opt in o.os Δ = apply!(opt, x, Δ) end return Δ end """ `InvDecay(γ)` Apply inverse time decay to an optimiser ```julia Optimiser(InvDecay(..), Opt(..)) ``` """ mutable struct InvDecay gamma::Float64 state::IdDict end InvDecay(γ = 0.001) = InvDecay(γ, IdDict()) function apply!(o::InvDecay, x, Δ) γ = o.gamma n = get!(o.state, x, 1) Δ .*= 1 / (1 + γ * n) o.state[x] = n + 1 return Δ end """ `ExpDecay(eta, decay, decay_step, clip)` Schedule the learning rate `eta` by `decay` every `decay_step` till a minimum of `clip`. To apply exponential decay to an optimiser: ```julia Optimiser(ExpDecay(..), Opt(..)) ``` """ mutable struct ExpDecay eta::Float64 decay::Float64 step::Int64 clip::Float64 current::IdDict end ExpDecay(opt = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4) = ExpDecay(opt, decay, decay_step, clip, IdDict()) function apply!(o::ExpDecay, x, Δ) η, s, decay = o.eta, o.step, o.decay n = o.current[x] = get(o.current, x, 0) + 1 if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1 η = max(η * decay^(s / n), o.clip) o.eta = η end @. Δ *= decay end """ `WeightDecay(wd)` Decay the weight parameter by `wd` """ mutable struct WeightDecay wd::Real end WeightDecay() = WeightDecay(0) function apply!(o::WeightDecay, x, Δ) wd = o.wd @. Δ += wd * data(x) end