using NNlib: conv, ∇conv_data, depthwiseconv expand(N, i::Tuple) = i expand(N, i::Integer) = ntuple(_ -> i, N) """ Conv(size, in=>out) Conv(size, in=>out, relu) Standard convolutional layer. `size` should be a tuple like `(2, 2)`. `in` and `out` specify the number of input and output channels respectively. Example: Applying Conv layer to a 1-channel input using a 2x2 window size, giving us a 16-channel output. Output is activated with ReLU. size = (2,2) in = 1 out = 16 Conv((2, 2), 1=>16, relu) Data should be stored in WHCN order (width, height, # channels, # batches). In other words, a 100×100 RGB image would be a `100×100×3×1` array, and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad`, `stride` and `dilation`. """ struct Conv{N,M,F,A,V} σ::F weight::A bias::V stride::NTuple{N,Int} pad::NTuple{M,Int} dilation::NTuple{N,Int} end function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; stride = 1, pad = 0, dilation = 1) where {T,N} stride = expand(Val(N-2), stride) pad = expand(Val(2*(N-2)), pad) dilation = expand(Val(N-2), dilation) return Conv(σ, w, b, stride, pad, dilation) end Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ, stride = stride, pad = pad, dilation = dilation) @treelike Conv function (c::Conv)(x::AbstractArray) # TODO: breaks gpu broadcast :( # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) σ.(conv(x, c.weight, cdims) .+ b) end function Base.show(io::IO, l::Conv) print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2]) print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight))) l.σ == identity || print(io, ", ", l.σ) print(io, ")") end (a::Conv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = invoke(a, Tuple{AbstractArray}, x) (a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = a(T.(x)) """ ConvTranspose(size, in=>out) ConvTranspose(size, in=>out, relu) Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`. `in` and `out` specify the number of input and output channels respectively. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad`, `stride` and `dilation`. """ struct ConvTranspose{N,M,F,A,V} σ::F weight::A bias::V stride::NTuple{N,Int} pad::NTuple{M,Int} dilation::NTuple{N,Int} end function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; stride = 1, pad = 0, dilation = 1) where {T,N} stride = expand(Val(N-2), stride) pad = expand(Val(2*(N-2)), pad) dilation = expand(Val(N-2), dilation) return ConvTranspose(σ, w, b, stride, pad, dilation) end ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = ConvTranspose(param(init(k..., reverse(ch)...)), param(zeros(ch[2])), σ, stride = stride, pad = pad, dilation = dilation) @treelike ConvTranspose function conv_transpose_dims(c::ConvTranspose, x::AbstractArray) # Calculate size of "input", from ∇conv_data()'s perspective... combined_pad = (c.pad[1:2:end] .+ c.pad[2:2:end]) I = (size(x)[1:end-2] .- 1).*c.stride .+ 1 .+ (size(c.weight)[1:end-2] .- 1).*c.dilation .- combined_pad C_in = size(c.weight)[end-1] batch_size = size(x)[end] # Create DenseConvDims() that looks like the corresponding conv() return DenseConvDims((I..., C_in, batch_size), size(c.weight); stride=c.stride, padding=c.pad, dilation=c.dilation, ) end function (c::ConvTranspose)(x::AbstractArray) # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) cdims = conv_transpose_dims(c, x) return σ.(∇conv_data(x, c.weight, cdims) .+ b) end function Base.show(io::IO, l::ConvTranspose) print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2]) print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1)) l.σ == identity || print(io, ", ", l.σ) print(io, ")") end (a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = invoke(a, Tuple{AbstractArray}, x) (a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = a(T.(x)) """ DepthwiseConv(size, in) DepthwiseConv(size, in=>mul) DepthwiseConv(size, in=>mul, relu) Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`. `in` and `mul` specify the number of input channels and channel multiplier respectively. In case the `mul` is not specified it is taken as 1. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad` and `stride`. """ struct DepthwiseConv{N,M,F,A,V} σ::F weight::A bias::V stride::NTuple{N,Int} pad::NTuple{M,Int} dilation::NTuple{N,Int} end function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; stride = 1, pad = 0, dilation = 1) where {T,N} stride = expand(Val(N-2), stride) pad = expand(Val(2*(N-2)), pad) dilation = expand(Val(N-2), dilation) return DepthwiseConv(σ, w, b, stride, pad, dilation) end DepthwiseConv(k::NTuple{N,Integer}, ch::Integer, σ = identity; init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N = DepthwiseConv(param(init(k..., 1, ch)), param(zeros(ch)), σ, stride = stride, pad = pad, dilation=dilation) DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = glorot_uniform, stride::NTuple{N,Integer} = map(_->1,k), pad::NTuple{N,Integer} = map(_->0,2 .* k), dilation::NTuple{N,Integer} = map(_->1,k)) where N = DepthwiseConv(param(init(k..., ch[2], ch[1])), param(zeros(ch[2]*ch[1])), σ, stride = stride, pad = pad) @treelike DepthwiseConv function (c::DepthwiseConv)(x) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation) σ.(depthwiseconv(x, c.weight, cdims) .+ b) end function Base.show(io::IO, l::DepthwiseConv) print(io, "DepthwiseConv(", size(l.weight)[1:ndims(l.weight)-2]) print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1)) l.σ == identity || print(io, ", ", l.σ) print(io, ")") end (a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = invoke(a, Tuple{AbstractArray}, x) (a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} = a(T.(x)) """ MaxPool(k) Max pooling layer. `k` stands for the size of the window for each dimension of the input. Takes the keyword arguments `pad` and `stride`. """ struct MaxPool{N,M} k::NTuple{N,Int} pad::NTuple{M,Int} stride::NTuple{N,Int} end function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N stride = expand(Val(N), stride) pad = expand(Val(2*N), pad) return MaxPool(k, pad, stride) end function (m::MaxPool)(x) pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride) return maxpool(x, pdims) end function Base.show(io::IO, m::MaxPool) print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")") end """ MeanPool(k) Mean pooling layer. `k` stands for the size of the window for each dimension of the input. Takes the keyword arguments `pad` and `stride`. """ struct MeanPool{N,M} k::NTuple{N,Int} pad::NTuple{M,Int} stride::NTuple{N,Int} end function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N stride = expand(Val(N), stride) pad = expand(Val(2*N), pad) return MeanPool(k, pad, stride) end function (m::MeanPool)(x) pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride) return meanpool(x, pdims) end function Base.show(io::IO, m::MeanPool) print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")") end