using Flux: testmode! using Flux.Tracker: data @testset "Dropout" begin x = [1.,2.,3.] @test x == testmode!(Dropout(0.1))(x) @test x == Dropout(0)(x) @test zero(x) == Dropout(1)(x) x = rand(100) m = Dropout(0.9) y = m(x) @test count(a->a==0, y) > 50 testmode!(m) y = m(x) @test count(a->a==0, y) == 0 testmode!(m, false) y = m(x) @test count(a->a==0, y) > 50 x = rand(100) m = Chain(Dense(100,100), Dropout(0.9)) y = m(x) @test count(a->a == 0, y) > 50 testmode!(m) y = m(x) @test count(a->a == 0, y) == 0 end @testset "BatchNorm" begin let m = BatchNorm(2), x = param([1 3 5; 2 4 6]) @test m.β.data == [0, 0] # initβ(2) @test m.γ.data == [1, 1] # initγ(2) # initial m.σ is 1 # initial m.μ is 0 @test m.active # @test m(x).data ≈ [-1 -1; 0 0; 1 1]' m(x) # julia> x # 2×3 Array{Float64,2}: # 1.0 3.0 5.0 # 2.0 4.0 6.0 # # μ of batch will be # (1. + 3. + 5.) / 3 = 3 # (2. + 4. + 6.) / 3 = 4 # # ∴ update rule with momentum: # .1 * 3 + 0 = .3 # .1 * 4 + 0 = .4 @test m.μ ≈ reshape([0.3, 0.4], 2, 1) # julia> .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.] # 2×1 Array{Float64,2}: # 1.3 # 1.3 @test m.σ² ≈ .1 .* var(x.data, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.] testmode!(m) @test !m.active x′ = m(x).data @test isapprox(x′[1], (1 .- 0.3) / sqrt(1.3), atol = 1.0e-5) end # with activation function let m = BatchNorm(2, sigmoid), x = param([1 3 5; 2 4 6]) @test m.active m(x) testmode!(m) @test !m.active y = m(x).data @test isapprox(y, data(sigmoid.((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ))), atol = 1.0e-7) end let m = BatchNorm(2), x = param(reshape(1:6, 3, 2, 1)) y = reshape(permutedims(x, [2, 1, 3]), 2, :) y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3]) @test m(x) == y end let m = BatchNorm(2), x = param(reshape(1:12, 2, 3, 2, 1)) y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :) y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4]) @test m(x) == y end let m = BatchNorm(2), x = param(reshape(1:24, 2, 2, 3, 2, 1)) y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :) y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5]) @test m(x) == y end let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1); m(x) @test (@allocated m(x)) < 100_000_000 end end @testset "InstanceNorm" begin # helper functions expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...) # begin tests let m = InstanceNorm(2), sizes = (3, 2, 2), x = param(reshape(collect(1:prod(sizes)), sizes)) @test m.β.data == [0, 0] # initβ(2) @test m.γ.data == [1, 1] # initγ(2) @test m.active m(x) #julia> x #[:, :, 1] = # 1.0 4.0 # 2.0 5.0 # 3.0 6.0 # #[:, :, 2] = # 7.0 10.0 # 8.0 11.0 # 9.0 12.0 # # μ will be # (1. + 2. + 3.) / 3 = 2. # (4. + 5. + 6.) / 3 = 5. # # (7. + 8. + 9.) / 3 = 8. # (10. + 11. + 12.) / 3 = 11. # # ∴ update rule with momentum: # (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5 # (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8 @test m.μ ≈ [0.5, 0.8] # momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq # julia> reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1. # 2-element Array{Float64,1}: # 1. # 1. @test m.σ² ≈ reshape(mean(.1 .* var(x.data, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1. testmode!(m) @test !m.active x′ = m(x).data @test isapprox(x′[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5) end # with activation function let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2), x = param(reshape(collect(1:prod(sizes)), sizes)) affine_shape = collect(sizes) affine_shape[1] = 1 @test m.active m(x) testmode!(m) @test !m.active y = m(x).data @test isapprox(y, data(sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ))), atol = 1.0e-7) end let m = InstanceNorm(2), sizes = (2, 4, 1, 2, 3), x = param(reshape(collect(1:prod(sizes)), sizes)) y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3) y = reshape(m(y), sizes...) @test m(x) == y end # check that μ, σ², and the output are the correct size for higher rank tensors let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6), x = param(reshape(collect(1:prod(sizes)), sizes)) y = m(x) @test size(m.μ) == (sizes[end - 1], ) @test size(m.σ²) == (sizes[end - 1], ) @test size(y) == sizes end # show that instance norm is equal to batch norm when channel and batch dims are squashed let m_inorm = InstanceNorm(2), m_bnorm = BatchNorm(12), sizes = (5, 5, 3, 4, 2, 6), x = param(reshape(collect(1:prod(sizes)), sizes)) @test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes) end let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1); m(x) @test (@allocated m(x)) < 100_000_000 end end @testset "GroupNorm" begin # begin tests squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions let m = GroupNorm(4,2), sizes = (3,4,2), x = param(reshape(collect(1:prod(sizes)), sizes)) @test m.β.data == [0, 0, 0, 0] # initβ(32) @test m.γ.data == [1, 1, 1, 1] # initγ(32) @test m.active m(x) #julia> x #[:, :, 1] = # 1.0 4.0 7.0 10.0 # 2.0 5.0 8.0 11.0 # 3.0 6.0 9.0 12.0 # #[:, :, 2] = # 13.0 16.0 19.0 22.0 # 14.0 17.0 20.0 23.0 # 15.0 18.0 21.0 24.0 # # μ will be # (1. + 2. + 3. + 4. + 5. + 6.) / 6 = 3.5 # (7. + 8. + 9. + 10. + 11. + 12.) / 6 = 9.5 # # (13. + 14. + 15. + 16. + 17. + 18.) / 6 = 15.5 # (19. + 20. + 21. + 22. + 23. + 24.) / 6 = 21.5 # # μ = # 3.5 15.5 # 9.5 21.5 # # ∴ update rule with momentum: # (1. - .1) * 0 + .1 * (3.5 + 15.5) / 2 = 0.95 # (1. - .1) * 0 + .1 * (9.5 + 21.5) / 2 = 1.55 @test m.μ ≈ [0.95, 1.55] # julia> mean(var(reshape(x,3,2,2,2),dims=(1,2)).* .1,dims=2) .+ .9*1. # 2-element Array{Tracker.TrackedReal{Float64},1}: # 1.25 # 1.25 @test m.σ² ≈ mean(squeeze(var(reshape(x,3,2,2,2),dims=(1,2))).*.1,dims=2) .+ .9*1. testmode!(m) @test !m.active x′ = m(x).data @test isapprox(x′[1], (1 - 0.95) / sqrt(1.25 + 1f-5), atol = 1.0e-5) end # with activation function let m = GroupNorm(4,2, sigmoid), sizes = (3, 4, 2), x = param(reshape(collect(1:prod(sizes)), sizes)) μ_affine_shape = ones(Int,length(sizes) + 1) μ_affine_shape[end-1] = 2 # Number of groups affine_shape = ones(Int,length(sizes) + 1) affine_shape[end-2] = 2 # Channels per group affine_shape[end-1] = 2 # Number of groups affine_shape[1] = sizes[1] affine_shape[end] = sizes[end] og_shape = size(x) @test m.active m(x) testmode!(m) @test !m.active y = m(x) x_ = reshape(x,affine_shape...) out = reshape(data(sigmoid.((x_ .- reshape(m.μ,μ_affine_shape...)) ./ sqrt.(reshape(m.σ²,μ_affine_shape...) .+ m.ϵ))),og_shape) @test isapprox(y, out, atol = 1.0e-7) end let m = GroupNorm(2,2), sizes = (2, 4, 1, 2, 3), x = param(reshape(collect(1:prod(sizes)), sizes)) y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3) y = reshape(m(y), sizes...) @test m(x) == y end # check that μ, σ², and the output are the correct size for higher rank tensors let m = GroupNorm(4,2), sizes = (5, 5, 3, 4, 4, 6), x = param(reshape(collect(1:prod(sizes)), sizes)) y = m(x) @test size(m.μ) == (m.G,1) @test size(m.σ²) == (m.G,1) @test size(y) == sizes end # show that group norm is the same as instance norm when the group size is the same as the number of channels let IN = InstanceNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,5), x = param(reshape(collect(1:prod(sizes)), sizes)) @test IN(x) ≈ GN(x) end # show that group norm is the same as batch norm for a group of size 1 and batch of size 1 let BN = BatchNorm(4), GN = GroupNorm(4,4), sizes = (2,2,3,4,1), x = param(reshape(collect(1:prod(sizes)), sizes)) @test BN(x) ≈ GN(x) end end