call(f, xs...) = f(xs...) # note for optimisers: set to zero # p.Δ at the end of the weigths update function optimiser(ps, fs...) ps = [Param(p) for p in ps] fs = map(ps) do p os = map(f -> f(p), fs) () -> foreach(call, os) end () -> foreach(call, fs) end """ SGD(params, η = 0.1; decay = 0) Classic gradient descent optimiser with learning rate `η`. For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`. Supports inverse decaying learning rate if the `decay` argument is provided. """ SGD(ps, η = 0.1; decay = 0) = optimiser(ps, p -> invdecay(p, decay), p -> descent(p,η)) """ Momentum(params, η = 0.01; ρ = 0.9, decay = 0) SGD with learning rate `η`, momentum `ρ` and optional learning rate inverse decay. """ Momentum(ps, η = 0.01; ρ = 0.9, decay = 0) = optimiser(ps, p->invdecay(p,decay), p->momentum(p, ρ, η), p->descent(p,1)) """ Nesterov(params, η = 0.01; ρ = 0.9, decay = 0) SGD with learning rate `η`, Nesterov momentum `ρ` and optional learning rate inverse decay. """ Nesterov(ps, η = 0.01; ρ = 0.9, decay = 0) = optimiser(ps, p->invdecay(p,decay), p->nesterov(p, ρ, η), p->descent(p,1)) """ RMSProp(params, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) [RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) optimiser. Parameters other than learning rate don't need tuning. Often a good choice for recurrent networks. """ RMSProp(ps, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) = optimiser(ps, p->rmsprop(p; η=η, ρ=ρ, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1)) """ ADAM(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) [ADAM](https://arxiv.org/abs/1412.6980v8) optimiser. """ ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) = optimiser(ps, p->adam(p; η=η, β1=β1, β2=β2, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1)) """ AdaMax(params, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) [AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser. Variant of ADAM based on the ∞-norm. """ AdaMax(ps, η = 0.002; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) = optimiser(ps, p->adamax(p; η=η, β1=β1, β2=β2, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1)) """ ADAGrad(params, η = 0.01; ϵ = 1e-8, decay = 0) [ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser. Parameters don't need tuning. """ ADAGrad(ps, η = 0.01; ϵ = 1e-8, decay = 0) = optimiser(ps, p->adagrad(p; η=η, ϵ=ϵ), p->invdecay(p,decay), p->descent(p,1)) """ ADADelta(params; ρ = 0.9, ϵ = 1e-8, decay = 0) [ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need tuning. """ ADADelta(ps; ρ = 0.9, ϵ = 1e-8, decay = 0) = optimiser(ps, p->adadelta(p; ρ=ρ, ϵ=ϵ), p->descent(p,1)) """ AMSGrad(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) [AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser. Parameters don't need tuning. """ AMSGrad(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) = optimiser(ps, p -> amsgrad(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))