# The Julia Ecosystem One of the main strengths of Julia lies in an ecosystem of packages globally providing a rich and consistent user experience. This is a non-exhaustive list of Julia packages, nicely complementing `Flux` in typical machine learning and deep learning workflows: - [ArgParse.jl](https://github.com/carlobaldassi/ArgParse.jl): package for parsing command-line arguments to Julia programs. - [Augmentor.jl](https://github.com/Evizero/Augmentor.jl): a fast image augmentation library in Julia for machine learning. - [BSON.jl](https://github.com/JuliaIO/BSON.jl): package for working with the Binary JSON serialisation format - [DataFrames.jl](https://github.com/joshday/OnlineStats.jl): in-memory tabular data in Julia - [DrWatson.jl](https://github.com/JuliaDynamics/DrWatson.jl): a scientific project assistant software - [MLDatasets.jl](https://github.com/JuliaML/MLDatasets.jl): utility package for accessing common machine learning datasets - [OnlineStats.jl](https://github.com/joshday/OnlineStats.jl): single-pass algorithms for statistics - [Parameters.jl](https://github.com/mauro3/Parameters.jl): types with default field values, keyword constructors and (un-)pack macros - [ProgressMeters.jl](https://github.com/timholy/ProgressMeter.jl): progress meters for long-running computations - [TensorBoardLogger.jl](https://github.com/PhilipVinc/TensorBoardLogger.jl): easy peasy logging to [tensorboard](https://www.tensorflow.org/tensorboard) in Julia