using Flux.Optimise using Flux.Tracker using Test @testset "Optimise" begin w = randn(10, 10) @testset for Opt in [Descent, Nesterov, RMSProp, ADAM, Momentum] w′ = param(randn(10, 10)) delta = param(Tracker.similar(w′)) loss(x) = Flux.mse(w*x, w′*x) opt = Opt(0.1) for t=1:10^5 l = loss(rand(10)) back!(l) update!(opt, w′.data, delta.data) w′ .-= delta end @test Flux.mse(w, w′) < 0.01 end end @testset "Training Loop" begin i = 0 l = param(1) Flux.train!(() -> (sleep(0.1); i += 1; l), Iterators.repeated((), 100), ()->(), cb = Flux.throttle(() -> (i > 3 && Flux.stop()), 1)) @test 3 < i < 50 end