# Cost functions mse(ŷ, y) = sum((ŷ .- y).^2)/length(y) crossentropy(ŷ::AbstractVecOrMat, y::AbstractVecOrMat) = -sum(y .* log.(ŷ)) / size(y, 2) @deprecate logloss(x, y) crossentropy(x, y) function logitcrossentropy(logŷ, y::AbstractMatrix, w) logŷ = logŷ .-maximum(logŷ,1) ypred = logŷ .- log.( sum( exp.( logŷ),1)) -sum(y .* w .* ypred) end