using Flux, MNIST data = [(trainfeatures(i), Vector{Float64}(onehot(trainlabel(i), 0:9))) for i = 1:60_000] train = data[1:50_000] test = data[50_001:60_000] m = Chain( Input(784), Dense(128), relu, Dense( 64), relu, Dense( 10), softmax) # Convert to TensorFlow model = tf(m) # An example prediction pre-training model(data[1][1]) @time Flux.train!(model, train, test, η = 1e-3) # An example prediction post-training model(data[1][1])