import Flow: Constant, postwalk, value, inputs, constant import TensorFlow: RawTensor cvalue(x) = x cvalue(c::Constant) = c.value cvalue(v::Vertex) = cvalue(value(v)) graph(x::Tensor) = x graph(::typeof(*), args...) = *(args...) graph(::typeof(+), args...) = +(args...) graph(::typeof(softmax), x) = nn.softmax(x) graph(::typeof(relu), x) = nn.relu(x) graph(::typeof(tanh), x) = tanh(x) graph(::typeof(σ), x) = nn.sigmoid(x) # reshape hack due to https://github.com/malmaud/TensorFlow.jl/issues/79 batchsize(x::Tensor) = reduce_sum(slice(TensorFlow.shape(x), [0], [1])) graph(::typeof(flatten), x) = reshape(x, pack([batchsize(x), Int32(-1)])) graph(r::Reshape, x) = reshape(x, pack([batchsize(x), map(Int32, r.dims)...])) graph(::Input, x) = x graph(c::Conv2D, x) = nn.conv2d(x, graph(c.filter), [1,c.stride...,1], "VALID") graph(p::MaxPool, x) = nn.max_pool(x, [1, p.size..., 1], [1, p.stride..., 1], "VALID") graph(::Flow.Group, xs...) = (xs...,) type Op f shape end Op(f) = Op(f, (d...) -> nothing) graph(op::Op, xs...) = op.f(xs...) Flux.shape(op::Op, d...) = op.shape(d...) # TODO: detect variable reuse graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x) function graph(v::IVertex, args...) # TODO: check number of arguments v = spliceinputs(v, map(constant, args)...) |> detuple postwalk(v) do v vertex(graph(cvalue(v), cvalue.(inputs(v))...)) end |> value end function graph(model::Flux.Model, args...) g = Flux.graph(model) g ≠ nothing || error("No graph for $model") graph(g, args...) end TensorFlow.Tensor(m::Flux.Model, args...) = graph(m, args...) RawTensor(data::Union{Batch,Seq}) = RawTensor(rawbatch(data))