using Flux, MNIST using Flux: accuracy data = [(trainfeatures(i), onehot(trainlabel(i), 0:9)) for i = 1:60_000] train = data[1:50_000] test = data[50_001:60_000] m = @Chain( Input(784), Affine(128), relu, Affine( 64), relu, Affine( 10), softmax) # Convert to MXNet model = mxnet(m) # An example prediction pre-training model(tobatch(data[1][1])) Flux.train!(model, train, η = 1e-3, cb = [()->@show accuracy(m, test)]) # An example prediction post-training model(tobatch(data[1][1]))