module TF using ..Flux, Flow, TensorFlow # Workaround for tensor display bug using Juno Media.render(::Juno.Clipboard, ::Tensor) = "Tensor()" cvalue(x) = x cvalue(c::Constant) = c.value cvalue(v::Vertex) = cvalue(value(v)) graph(x::Tensor) = x matrixify(xs) = xs matrixify(xs::Vector) = xs[:,1:1] # TODO: detect variable reuse graph{T<:AArray}(p::Flux.Param{T}) = Variable(matrixify(p.x)) function graph(model::Model, args...) g = Flux.graph(model) g = Flow.mapconst(g) do x !isa(x, Flux.ModelInput) ? x : isa(x.name, Integer) ? args[x.name] : getfield(model, x.name) end postwalk(g) do v vertex(graph(cvalue(v), cvalue.(inputs(v))...)) end |> value end graph(::typeof(*), args...) = *(args...) graph(::typeof(+), args...) = +(args...) type Model session::Session inputs::Vector{Tensor} graph::Tensor grad::Tensor end Media.render(::Juno.Clipboard, ::Model) = "Flux.TF.Model()" function tf(model) sess = Session() input = placeholder(Float64) g = graph(model, input) run(sess, initialize_all_variables()) Model(sess, [input], g, gradients(g, input)) end function (m::Model)(args...) @assert length(args) == length(m.inputs) run(m.session, m.graph, Dict(zip(m.inputs, args))) end function Flux.back!(m::Model, Δ, args...) @assert length(args) == length(m.inputs) # TODO: keyword arguments to `gradients` run(m.session, m.grad, Dict(zip(m.inputs, args))) end function Flux.update!(m::Model) error("update! is not yet supported on TensorFlow models") end end