using Test, Random import Flux: activations @testset "basic" begin @testset "helpers" begin @testset "activations" begin dummy_model = Chain(x->x.^2, x->x .- 3, x -> tan.(x)) x = randn(10) @test activations(dummy_model, x)[1] == x.^2 @test activations(dummy_model, x)[2] == (x.^2 .- 3) @test activations(dummy_model, x)[3] == tan.(x.^2 .- 3) @test activations(Chain(), x) == () @test activations(Chain(identity, x->:foo), x)[2] == :foo # results include `Any` type end end @testset "Chain" begin @test_nowarn Chain(Dense(10, 5, σ), Dense(5, 2))(randn(10)) @test_throws DimensionMismatch Chain(Dense(10, 5, σ),Dense(2, 1))(randn(10)) # numeric test should be put into testset of corresponding layer end @testset "Activations" begin c = Chain(Dense(3,5,relu), Dense(5,1,relu)) X = Float32.([1.0; 1.0; 1.0]) @test_nowarn gradient(()->Flux.activations(c, X)[2][1], params(c)) end @testset "Dense" begin @test length(Dense(10, 5)(randn(10))) == 5 @test_throws DimensionMismatch Dense(10, 5)(randn(1)) @test_throws MethodError Dense(10, 5)(1) # avoid broadcasting @test_throws MethodError Dense(10, 5).(randn(10)) # avoid broadcasting @test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(1, 1) @test Dense(10, 1, identity, initW = ones, initb = zeros)(ones(10,2)) == 10*ones(1, 2) @test Dense(10, 2, identity, initW = ones, initb = zeros)(ones(10,1)) == 10*ones(2, 1) @test Dense(10, 2, identity, initW = ones, initb = zeros)([ones(10,1) 2*ones(10,1)]) == [10 20; 10 20] end @testset "Diagonal" begin @test length(Flux.Diagonal(10)(randn(10))) == 10 @test length(Flux.Diagonal(10)(1)) == 10 @test length(Flux.Diagonal(10)(randn(1))) == 10 @test_throws DimensionMismatch Flux.Diagonal(10)(randn(2)) @test Flux.Diagonal(2)([1 2]) == [1 2; 1 2] @test Flux.Diagonal(2)([1,2]) == [1,2] @test Flux.Diagonal(2)([1 2; 3 4]) == [1 2; 3 4] end @testset "Maxout" begin # Note that the normal common usage of Maxout is as per the docstring # These are abnormal constructors used for testing purposes @testset "Constructor" begin mo = Maxout(() -> identity, 4) input = rand(40) @test mo(input) == input end @testset "simple alternatives" begin mo = Maxout((x -> x, x -> 2x, x -> 0.5x)) input = rand(40) @test mo(input) == 2*input end @testset "complex alternatives" begin mo = Maxout((x -> [0.5; 0.1]*x, x -> [0.2; 0.7]*x)) input = [3.0 2.0] target = [0.5, 0.7].*input @test mo(input) == target end @testset "params" begin mo = Maxout(()->Dense(32, 64), 4) ps = params(mo) @test length(ps) == 8 #4 alts, each with weight and bias end end @testset "SkipConnection" begin @testset "zero sum" begin input = randn(10, 10, 10, 10) @test SkipConnection(x -> zeros(size(x)), (a,b) -> a + b)(input) == input end @testset "concat size" begin input = randn(10, 2) @test size(SkipConnection(Dense(10,10), (a,b) -> cat(a, b, dims = 2))(input)) == (10,4) end end @testset "output dimensions" begin m = Chain(Conv((3, 3), 3 => 16), Conv((3, 3), 16 => 32)) @test Flux.outdims(m, (10, 10)) == (6, 6) m = Dense(10, 5) @test Flux.outdims(m, (5, 2)) == (5,) @test Flux.outdims(m, (10,)) == (5,) m = Flux.Diagonal(10) @test Flux.outdims(m, (10,)) == (10,) m = Maxout(() -> Conv((3, 3), 3 => 16), 2) @test Flux.outdims(m, (10, 10)) == (8, 8) end end