using Flux using Flux: throttle, nfan, glorot_uniform, glorot_normal, stack, unstack using StatsBase: var using Random using Test @testset "Throttle" begin @testset "default behaviour" begin a = [] f = throttle(()->push!(a, time()), 1, leading=true, trailing=false) f() f() f() sleep(1.01) @test length(a) == 1 end @testset "leading behaviour" begin a = [] f = throttle(()->push!(a, time()), 1, leading=true, trailing=false) f() @test length(a) == 1 f() @test length(a) == 1 sleep(1.01) f() @test length(a) == 2 end @testset "trailing behaviour" begin a = [] f = throttle(()->push!(a, time()), 1, leading=false, trailing=true) f() @test length(a) == 0 f() @test length(a) == 0 sleep(1.01) @test length(a) == 1 end @testset "arguments" begin a = [] f = throttle((x)->push!(a, x), 1, leading=true, trailing=true) f(1) @test a == [1] f(2) @test a == [1] f(3) @test a == [1] sleep(1.01) @test a == [1, 3] end end @testset "Initialization" begin # Set random seed so that these tests don't fail randomly Random.seed!(0) @testset "Fan in/out" begin @test nfan() == (1, 1) #For a constant @test nfan(100) == (1, 100) #For vector @test nfan(100, 200) == (200, 100) #For Dense layer @test nfan(2, 30, 40) == (2 * 30, 2 * 40) #For 1D Conv layer @test nfan(2, 3, 40, 50) == (2 * 3 * 40, 2 * 3 * 50) #For 2D Conv layer @test nfan(2, 3, 4, 50, 60) == (2 * 3 * 4 * 50, 2 * 3 * 4 * 60) #For 3D Conv layer end @testset "glorot" begin # glorot_uniform and glorot_normal should both yield a kernel with # variance ≈ 2/(fan_in + fan_out) for dims ∈ [(1000,), (100, 100), (100, 400), (2, 3, 32, 64), (2, 3, 4, 32, 64)] for init ∈ [glorot_uniform, glorot_normal] v = init(dims...) fan_in, fan_out = nfan(dims...) σ2 = 2 / (fan_in + fan_out) @test 0.9σ2 < var(v) < 1.1σ2 end end end end @testset "Params" begin m = Dense(10, 5) @test size.(params(m)) == [(5, 10), (5,)] m = RNN(10, 5) @test size.(params(m)) == [(5, 10), (5, 5), (5,), (5,)] # Layer duplicated in same chain, params just once pls. c = Chain(m, m) @test size.(params(c)) == [(5, 10), (5, 5), (5,), (5,)] # Self-referential array. Just want params, no stack overflow pls. r = Any[nothing,m] r[1] = r @test size.(params(r)) == [(5, 10), (5, 5), (5,), (5,)] end @testset "Basic Stacking" begin x = randn(3,3) stacked = stack([x, x], 2) @test size(stacked) == (3,2,3) end @testset "Precision" begin m = Chain(Dense(10, 5, relu), Dense(5, 2)) x = rand(10) @test eltype(m[1].W) == Float32 @test eltype(m(x)) == Float32 @test eltype(f64(m)(x)) == Float64 @test eltype(f64(m)[1].W) == Float64 @test eltype(f32(f64(m))[1].W) == Float32 end @testset "Stacking" begin stacked_array=[ 8 9 3 5; 9 6 6 9; 9 1 7 2; 7 4 10 6 ] unstacked_array=[[8, 9, 9, 7], [9, 6, 1, 4], [3, 6, 7, 10], [5, 9, 2, 6]] @test unstack(stacked_array, 2) == unstacked_array @test stack(unstacked_array, 2) == stacked_array @test stack(unstack(stacked_array, 1), 1) == stacked_array end