using Flux, MNIST @time begin data = [(trainfeatures(i), onehot(trainlabel(i), 0:9)) for i = 1:60_000] train = data[1:50_000] test = data[50_001:60_000] nothing end m = Chain( Input(784), Dense(128), relu, Dense( 64), relu, Dense( 10), softmax) model = mxnet(m, 784) @time Flux.train!(model, train, test, epoch = 1, η=0.001)