# Arrays nfan() = 1, 1 #fan_in, fan_out nfan(n) = 1, n #A vector is treated as a n×1 matrix nfan(n_out, n_in) = n_in, n_out #In case of Dense kernels: arranged as matrices nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) #In case of convolution kernels glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...))) glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...))) ones(T::Type, dims...) = Base.ones(T, dims...) zeros(T::Type, dims...) = Base.zeros(T, dims...) ones(dims...) = Base.ones(Float32, dims...) zeros(dims...) = Base.zeros(Float32, dims...) unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...)) stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim) unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)] """ chunk(xs, n) Split `xs` into `n` parts. ```julia julia> chunk(1:10, 3) 3-element Array{Array{Int64,1},1}: [1, 2, 3, 4] [5, 6, 7, 8] [9, 10] ``` """ chunk(xs, n) = collect(Iterators.partition(xs, ceil(Int, length(xs)/n))) batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i) """ frequencies(xs) Count the number of times that each element of `xs` appears. ```julia julia> frequencies(['a','b','b']) Dict{Char,Int64} with 2 entries: 'b' => 2 'a' => 1 ``` """ function frequencies(xs) fs = Dict{eltype(xs),Int}() for x in xs fs[x] = get(fs, x, 0) + 1 end return fs end head(x::Tuple) = reverse(Base.tail(reverse(x))) squeezebatch(x) = reshape(x, head(size(x))) """ batch(xs) Batch the arrays in `xs` into a single array. ```julia julia> batch([[1,2,3],[4,5,6]]) 3×2 Array{Int64,2}: 1 4 2 5 3 6 ``` """ function batch(xs) data = first(xs) isa AbstractArray ? similar(first(xs), size(first(xs))..., length(xs)) : Vector{eltype(xs)}(undef, length(xs)) for (i, x) in enumerate(xs) data[batchindex(data, i)...] = x end return data end Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))] """ batchseq(seqs, pad) Take a list of `N` sequences, and turn them into a single sequence where each item is a batch of `N`. Short sequences will be padded by `pad`. ```julia julia> batchseq([[1, 2, 3], [4, 5]], 0) 3-element Array{Array{Int64,1},1}: [1, 4] [2, 5] [3, 0] ``` """ function batchseq(xs, pad = nothing, n = maximum(length(x) for x in xs)) xs_ = [rpad(x, n, pad) for x in xs] [batch([xs_[j][i] for j = 1:length(xs_)]) for i = 1:n] end # Other """ Returns a function that when invoked, will only be triggered at most once during `timeout` seconds. Normally, the throttled function will run as much as it can, without ever going more than once per `wait` duration; but if you'd like to disable the execution on the leading edge, pass `leading=false`. To enable execution on the trailing edge, ditto. """ function throttle(f, timeout; leading=true, trailing=false) cooldown = true later = nothing result = nothing function throttled(args...; kwargs...) yield() if cooldown if leading result = f(args...; kwargs...) else later = () -> f(args...; kwargs...) end cooldown = false @async try while (sleep(timeout); later != nothing) later() later = nothing end finally cooldown = true end elseif trailing later = () -> (result = f(args...; kwargs...)) end return result end end """ @jit ... The `@jit` annotation can be applied to any code, and the code will be compiled for performance. @jit f(x) = @jit(x) + @jit(x) Note that compilation happens regardless of the `@jit` macro, so it should only be used for aesthetic purposes, or by recovering Python users. """ macro jit(ex) esc(ex) end