using Flux: mapt, collectt, shapecheckt struct Exec session ::Session input ::Any output ::Any grads ::Any params ::Dict{Flux.Param,Tensor} stacks ::Dict{Any,Any} end function makesession(model, inputs; session = Session(Graph())) inputs = mapt(_ -> placeholder(Float32), inputs) params, stacks, output = tograph(model, inputs...) # grads = gradients(output, [collectt(inputs)..., values(params)...]) grads = placeholder(Float32) run(session, global_variables_initializer()) Exec(session, inputs, output, grads, params, stacks) end retuple(xs) = xs retuple(xs::AbstractArray{<:AbstractArray}) = (retuple.(xs)...,) dictt(xs, ys) = Dict(zip(collectt(xs), collectt(ys))) function params(m::Exec, args...) shapecheckt(m.input, args) idict = dictt(m.input, args) pdict = Dict(t => p.x for (p, t) in m.params) merge(idict, pdict) end function (m::Exec)(args...) retuple(run(m.session, m.output, params(m, args...))) end pullt!(_, xs) = shift!(xs) pullt!(x::Tuple, xs) = map(x -> pullt!(x, xs), x) # TODO: gradients don't work yet # `gradients` lacks support for `grad_y`s and multiple `y`s function Flux.back!(m::Exec, Δ, args...) Δps = run(m.session, m.grads, params(m, args...)) Δin = pullt!(m.input, Δps) for (p, Δ) in zip(keys(m.params), Δps) p.Δx .+= Δ end Δin end function Flux.update!(m::Exec, η) for p in keys(m.params) update!(p, η) end return m end mutable struct Model model::Any exec::Exec Model(model) = new(model) end tf(model) = Model(model) function (m::Model)(args...) args = mapt(x->Float32.(x), args) isdefined(m, :exec) || (m.exec = makesession(m.model, args)) @tferr m.exec.stacks m.exec(args...) end Flux.back!(m::Model, Δ, args...) = back!(m.exec, Δ, args...) Flux.update!(m::Model, η) = (update!(m.exec, η); m) # Recurrent Models using Flux: Stateful, SeqModel tf(m::Stateful) = Stateful(tf(m.model), m.istate, m.ostate) tf(m::SeqModel) = SeqModel(tf(m.model), m.steps)