using Flux, MNIST data = [(Vector{Float32}(trainfeatures(i)), onehot(Float32, trainlabel(i), 0:9)) for i = 1:60_000] train = data[1:50_000] test = data[50_001:60_000] m = Chain( Input(784), Affine(128), relu, Affine( 64), relu, Affine( 10), softmax) # Convert to TensorFlow model = tf(m) # An example prediction pre-training model(data[1][1]) @time Flux.train!(model, train, test, η = 1e-3) # An example prediction post-training model(data[1][1])