module TF using ..Flux, Flow, TensorFlow import Juno: info import Flux: accuracy export tf # Workaround for tensor display bug using Juno Media.render(::Juno.Clipboard, ::Tensor) = "Tensor()" cvalue(x) = x cvalue(c::Constant) = c.value cvalue(v::Vertex) = cvalue(value(v)) graph(x::Tensor) = x # TODO: detect variable reuse graph{T<:AArray}(p::Flux.Param{T}) = Variable(p.x) function graph(model::Model, args...) g = Flux.graph(model) g = Flow.mapconst(g) do x !isa(x, Flux.ModelInput) ? x : isa(x.name, Integer) ? args[x.name] : getfield(model, x.name) end postwalk(g) do v vertex(graph(cvalue(v), cvalue.(inputs(v))...)) end |> value end graph(::typeof(*), args...) = *(args...) graph(::typeof(+), args...) = +(args...) graph(::typeof(softmax), x) = nn.softmax(x) graph(::typeof(relu), x) = nn.relu(x) graph(::Input, x) = x # Treat the first dimension as the batch index # TODO: custom data type for this batch(x) = reshape(x, (1,size(x)...)) batch(xs...) = vcat(map(batch, xs)...) unbatch(xs) = reshape(xs, size(xs)[2:end]) type Model session::Session inputs::Vector{Tensor} graph::Tensor grad::Tensor end Media.render(::Juno.Clipboard, ::Model) = "Flux.TF.Model()" function tf(model) sess = Session(Graph()) input = placeholder(Float64) g = graph(model, input) run(sess, initialize_all_variables()) Model(sess, [input], g, gradients(g, input)) end function (m::Model)(args...) @assert length(args) == length(m.inputs) unbatch(run(m.session, m.graph, Dict(zip(m.inputs, map(batch, args))))) end function Flux.back!(m::Model, Δ, args...) @assert length(args) == length(m.inputs) # TODO: keyword arguments to `gradients` run(m.session, m.grad, Dict(zip(m.inputs, args))) end function Flux.update!(m::Model) error("update! is not yet supported on TensorFlow models") end function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1, loss = (y, y′) -> reduce_sum((y - y′).^2)/2, opt = TensorFlow.train.GradientDescentOptimizer(η)) i = 0 Y = placeholder(Float64) Loss = loss(m.graph, Y) minimize_op = TensorFlow.train.minimize(opt, Loss) for e in 1:epoch info("Epoch $e\n") @progress for (x, y) in train y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op), Dict(m.inputs[1]=>batch(x), Y=>batch(y))) if i % 5000 == 0 @show y @show accuracy(m, test) end i += 1 end end end end