using NNlib: conv """ Conv(size, in=>out) Conv(size, in=>out, relu) Standard convolutional layer. `size` should be a tuple like `(2, 2)`. `in` and `out` specify the number of input and output channels respectively. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad`, `stride` and `dilation`. """ struct Conv{N,F,A,V} σ::F weight::A bias::V stride::NTuple{N,Int} pad::NTuple{N,Int} dilation::NTuple{N,Int} end Conv(w::AbstractArray{T}, b::AbstractVector{T}, σ = identity; stride = 1, pad = 0, dilation=1) where T = Conv(σ, w, b, stride, pad, dilation) Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn, stride::NTuple{N,Integer} = map(_->1,k), pad::NTuple{N,Integer} = map(_->0,k), dilation::NTuple{N,Integer} = map(_->1,k)) where N = Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ, stride = stride, pad = pad, dilation = dilation) Flux.treelike(Conv) function (c::Conv)(x) # TODO: breaks gpu broadcast :( # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b) end function Base.show(io::IO, l::Conv) print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2]) print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight))) l.σ == identity || print(io, ", ", l.σ) print(io, ")") end