using NNlib: conv @generated sub2(::Type{Val{N}}) where N = :(Val($(N-2))) expand(N, i::Tuple) = i expand(N, i::Integer) = ntuple(_ -> i, N) """ Conv(size, in=>out) Conv(size, in=>out, relu) Standard convolutional layer. `size` should be a tuple like `(2, 2)`. `in` and `out` specify the number of input and output channels respectively. Data should be stored in WHCN order. In other words, a 100×100 RGB image would be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array. Takes the keyword arguments `pad`, `stride` and `dilation`. """ struct Conv{N,F,A,V} σ::F weight::A bias::V stride::NTuple{N,Int} pad::NTuple{N,Int} dilation::NTuple{N,Int} end Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity; stride = 1, pad = 0, dilation = 1) where {T,N} = Conv(σ, w, b, expand.(sub2(Val{N}), (stride, pad, dilation))...) Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity; init = initn, stride = 1, pad = 0, dilation = 1) where N = Conv(param(init(k..., ch...)), param(zeros(ch[2])), σ, stride = stride, pad = pad, dilation = dilation) @treelike Conv function (c::Conv)(x) # TODO: breaks gpu broadcast :( # ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1))) σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1) σ.(conv(x, c.weight, stride = c.stride, pad = c.pad, dilation = c.dilation) .+ b) end function Base.show(io::IO, l::Conv) print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2]) print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight))) l.σ == identity || print(io, ", ", l.σ) print(io, ")") end """ MaxPool(k) Maxpooling layer. `k` stands for the size of the window for each dimension of the input. Takes the keyword arguments `pad` and `stride`. """ struct MaxPool{N} k::NTuple{N,Int} pad::NTuple{N,Int} stride::NTuple{N,Int} MaxPool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride) end function MaxPool{N}(k::Int; pad = 0, stride = k) where N k_ = Tuple(repeat([k, ], N)) MaxPool(k_; pad = map(_->pad,k_), stride=map(_->stride,k_)) end (m::MaxPool)(x) = maxpool(x, m.k; pad = m.pad, stride = m.stride) function Base.show(io::IO, m::MaxPool) print(io, "MaxPool(", m.k, ", ", m.pad, ", ", m.stride, ")") end """ MeanPool(k) Meanpooling layer. `k` stands for the size of the window for each dimension of the input. Takes the keyword arguments `pad` and `stride`. """ struct MeanPool{N} k::NTuple{N,Int} pad::NTuple{N,Int} stride::NTuple{N,Int} MeanPool(k::NTuple{N,Int}; pad = map(_->0,k), stride = k) where N = new{N}(k, pad, stride) end function MeanPool{N}(k::Int; pad = 0, stride = k) where N k_ = Tuple(repeat([k, ], N)) MeanPool(k_; pad = map(_->pad,k_), stride=map(_->stride,k_)) end (m::MeanPool)(x) = meanpool(x, m.k; pad = m.pad, stride = m.stride) function Base.show(io::IO, m::MeanPool) print(io, "MeanPool(", m.k, ", ", m.pad, ", ", m.stride, ")") end