module MNIST using GZip, Colors const Gray = Colors.Gray{Colors.N0f8} const dir = joinpath(@__DIR__, "../../deps/mnist") function load() mkpath(dir) cd(dir) do for file in ["train-images-idx3-ubyte", "train-labels-idx1-ubyte", "t10k-images-idx3-ubyte", "t10k-labels-idx1-ubyte"] isfile(file) && continue info("Downloading MNIST dataset") download("https://cache.julialang.org/http://yann.lecun.com/exdb/mnist/$file.gz", "$file.gz") open(file, "w") do io write(io, GZip.open(read, "$file.gz")) end end end end const IMAGEOFFSET = 16 const LABELOFFSET = 8 const NROWS = 28 const NCOLS = 28 const TRAINIMAGES = joinpath(dir, "train-images-idx3-ubyte") const TRAINLABELS = joinpath(dir, "train-labels-idx1-ubyte") const TESTIMAGES = joinpath(dir, "t10k-images-idx3-ubyte") const TESTLABELS = joinpath(dir, "t10k-labels-idx1-ubyte") function imageheader(io::IO) magic_number = bswap(read(io, UInt32)) total_items = bswap(read(io, UInt32)) nrows = bswap(read(io, UInt32)) ncols = bswap(read(io, UInt32)) return magic_number, Int(total_items), Int(nrows), Int(ncols) end function labelheader(io::IO) magic_number = bswap(read(io, UInt32)) total_items = bswap(read(io, UInt32)) return magic_number, Int(total_items) end function rawimage(io::IO) img = Array{Gray}(NCOLS, NROWS) for i in 1:NCOLS, j in 1:NROWS img[i, j] = reinterpret(Colors.N0f8, read(io, UInt8)) end return img end function rawimage(io::IO, index::Integer) seek(io, IMAGEOFFSET + NROWS * NCOLS * (index - 1)) return rawimage(io) end rawlabel(io::IO) = Int(read(io, UInt8)) function rawlabel(io::IO, index::Integer) seek(io, LABELOFFSET + (index - 1)) return rawlabel(io) end getfeatures(io::IO, index::Integer) = vec(getimage(io, index)) """ images() images(:test) Load the MNIST images. Each image is a 28×28 array of `Gray` colour values (see Colors.jl). Returns the 60,000 training images by default; pass `:test` to retreive the 10,000 test images. """ function images(set = :train) load() io = IOBuffer(read(set == :train ? TRAINIMAGES : TESTIMAGES)) _, N, nrows, ncols = imageheader(io) [rawimage(io) for _ in 1:N] end """ labels() labels(:test) Load the labels corresponding to each of the images returned from `images()`. Each label is a number from 0-9. Returns the 60,000 training labels by default; pass `:test` to retreive the 10,000 test labels. """ function labels(set = :train) load() io = IOBuffer(read(set == :train ? TRAINLABELS : TESTLABELS)) _, N = labelheader(io) [rawlabel(io) for _ = 1:N] end end # module