import Base: *, == import LinearAlgebra using LinearAlgebra: Transpose, Adjoint, diagm struct TrackedArray{T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N} tracker::Tracked{A} data::A grad::A TrackedArray{T,N,A}(t::Tracked{A}, data::A) where {T,N,A} = new(t, data) TrackedArray{T,N,A}(t::Tracked{A}, data::A, grad::A) where {T,N,A} = new(t, data, grad) end data(x::TrackedArray) = x.data tracker(x::TrackedArray) = x.tracker TrackedVector{T,A} = TrackedArray{T,1,A} TrackedMatrix{T,A} = TrackedArray{T,2,A} TrackedVecOrMat{T,A} = Union{TrackedVector{T,A},TrackedMatrix{T,A}} track(c::Call, x::AbstractArray) = TrackedArray(c, x) TrackedArray(c::Call, x::A) where A <: AbstractArray = TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c), x) TrackedArray(c::Call, x::A, Δ::A) where A <: AbstractArray = TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, Δ), x, Δ) TrackedArray(x::AbstractArray) = TrackedArray(Call(), x, zeros(x)) Base.eltype(x::Type{<:TrackedArray{T}}) where T <: Real = TrackedReal{T} Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} = print(io, "TrackedArray{…,$A}") function Base.summary(io::IO, x::TrackedArray) print(io, "Tracked ") summary(io, data(x)) end Base.print_array(io::IO, x::TrackedArray) = Base.print_array(io, data(x)) Base.setindex!(xs::TrackedArray, v, i...) = error("Can't differentiate `setindex!`") back!(::TrackedArray) = error("Value is not scalar; use `back!(sum(x))` or `back!(x, Δ)`") # Fallthrough methods for f in :[Base.size, Base.ndims].args @eval @inline $f(x::TrackedArray, a...) = $f(data(x), a...) end Base.size(x::TrackedArray, i::Integer, j::Integer, is::Integer...) = size(data(x), i, j, is...) Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) = similar(data(x), dims...) Base.similar(x::TrackedArray, T::Type) = similar(data(x), T) x::TrackedArray == y = data(x) == y y == x::TrackedArray = y == data(x) x::TrackedArray == y::TrackedArray = data(x) == data(y) # Array Stdlib Base.getindex(xs::TrackedArray, i...) = track(getindex, xs, i...) @grad function getindex(xs::AbstractArray, i...) data(xs)[i...], function (Δ) Δ′ = zero(xs) Δ′[i...] = data(Δ) (nobacksies(:getindex, Δ′), map(_->nothing, i)...) end end Base.:-(xs::TrackedArray) = track(-, xs) @grad -(xs) = -data(xs), Δ -> (-Δ,) Base.transpose(xs::TrackedArray) = track(transpose, xs) Base.adjoint(xs::TrackedArray) = track(adjoint, xs) @grad transpose(xs) = transpose(data(xs)), Δ -> (reshape(transpose(Δ), size(xs)),) @grad adjoint(xs) = data(xs)', Δ -> (reshape(Δ', size(xs)),) Base.repeat(A::TrackedArray; kw...) = track_kw(repeat, A; kw...) @grad function repeat(xs; inner=ntuple(x->1, ndims(A)), outer=ntuple(x->1, ndims(A))) repeat(data(xs), inner = inner, outer = outer), function (Δ) Δ′ = zero(xs) S = size(xs) # Loop through each element of Δ, calculate source dimensions, accumulate into Δ′ for (dest_idx, val) in enumerate(IndexCartesian(), data(Δ)) # First, round dest_idx[dim] to nearest gridpoint defined by inner[dim], then # wrap around based on original size S. src_idx = [mod1(div(dest_idx[dim] - 1, inner[dim]) + 1, S[dim]) for dim in 1:length(S)] Δ′[src_idx...] += val end (nobacksies(:repeat, Δ′),) end end for f in [:vcat, :hcat] UArray = :(Union{TrackedArray,Vector,Matrix,Adjoint,Transpose}) @eval begin # This section is a bit of a hack since julia doesn't have a standardised # promotion mechanism for concatenation yet # https://github.com/JuliaLang/julia/pull/20815 # It should support tracked concatenation with rank ∈ (1,2) with a # TrackedArray anywhere among the arguments This works as long as base has # other functions that captures `(::Union{Vector,RowVector,Matrix}...)`. Base.$f(a::$UArray...) = track($f, a...) # It should support tracked concatenation with rank>2 if the TrackedArray is # first Base.$f(a::TrackedArray, b::AbstractArray...) = track($f, a, b...) Base.$f(a::TrackedArray, b::$UArray...) = track($f, a, b...) # resolves ambiguity introduced by previous row # It should support tracked concatenation with rank>2 if the TrackedArray is # second Base.$f(a::Array, b::TrackedArray, c::AbstractArray...) = track($f, a, b, c...) Base.$f(a::Union{Vector,Matrix,Adjoint,Transpose}, b::TrackedArray, c::$UArray...) = track($f, a, b, c...) # resolves ambiguity introduced by previous row end end @grad function vcat(xs...) vcat(data.(xs)...), function (Δ) start = 0 Δs = [begin i = map(_ -> :, size(xsi)) |> Base.tail d = Δ[start+1:start+size(xsi,1), i...] start += size(xsi, 1) d end for xsi in xs] return (Δs...,) end end @grad function hcat(xs...) hcat(data.(xs)...), function (Δ) start = 0 Δs = [begin d = if ndims(xsi) == 1 Δ[:, start+1] else i = map(_ -> :, size(xsi)) |> Base.tail |> Base.tail Δ[:, start+1:start+size(xsi,2), i...] end start += size(xsi, 2) d end for xsi in xs] return (Δs...,) end end Base.cat(a::TrackedArray; dims) = track_kw(cat, a, dims = dims) Base.cat(a::TrackedArray, b::TrackedArray, c::AbstractArray...; dims) = track_kw(cat, a, b, c..., dims = dims) Base.cat(a::TrackedArray, b::AbstractArray, c::AbstractArray...; dims) = track_kw(cat, a, b, c..., dims = dims) Base.cat(a::AbstractArray, b::TrackedArray, c::AbstractArray...; dims) = track_kw(cat, a, b, c..., dims = dims) @grad function cat(Xs...; dims) cat(data.(Xs)..., dims = dims), function (Δ) start = ntuple(i -> 0, Val(ndims(Δ))) Δs = [begin dim_xs = 1:ndims(xs) till_xs = ntuple((i -> i in dims ? (i in dim_xs ? size(xs,i) : 1) : 0), Val(ndims(Δ))) xs_in_Δ = ntuple(i -> till_xs[i] > 0 ? (start[i]+1:start[i]+till_xs[i]) : Colon(), Val(ndims(Δ))) d = reshape(Δ[xs_in_Δ...],size(xs)) start = start .+ till_xs d end for xs in Xs] return (Δs...,) end end Base.reshape(xs::TrackedArray, dims::Union{Colon,Int64}...) = reshape(xs, dims) Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Union{Int64,Colon}}}) = reshape(xs, Base._reshape_uncolon(xs, dims)) Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Int64}}) = track(reshape, xs, dims) @grad reshape(xs, dims) = reshape(data(xs), dims), Δ -> (reshape(Δ, size(xs)),nothing) Base.permutedims(xs::TrackedArray, dims) = track(permutedims, xs, dims) @grad permutedims(xs, dims) = permutedims(data(xs), dims), Δ -> (permutedims(Δ, invperm(dims)),nothing) function _kron(mat1::AbstractMatrix,mat2::AbstractMatrix) m1, n1 = size(mat1) mat1_rsh = reshape(mat1,(1,m1,1,n1)) m2, n2 = size(mat2) mat2_rsh = reshape(mat2,(m2,1,n2,1)) return reshape(mat1_rsh.*mat2_rsh, (m1*m2,n1*n2)) end Base.kron(a::TrackedMatrix, b::TrackedMatrix) = _kron(a, b) Base.kron(a::TrackedMatrix, b::AbstractMatrix) = _kron(a, b) Base.kron(a::AbstractMatrix, b::TrackedMatrix) = _kron(a, b) # Reductions Base.sum(xs::TrackedArray, dim) = track(sum, xs, dim) Base.sum(xs::TrackedArray) = track(sum, xs) Base.sum(f::Union{Function,Type},xs::TrackedArray) = sum(f.(xs)) @grad sum(xs, dim...) = sum(data(xs), dim...), Δ -> (zero(xs) .+ Δ, map(_->nothing,dim)...) Base.prod(xs::TrackedArray, dim) = track(prod, xs, dim) Base.prod(xs::TrackedArray) = track(prod, xs) Base.prod(f::Union{Function, Type}, xs::TrackedArray) = prod(f.(xs)) @grad prod(xs) = prod(data(xs)), Δ -> (prod(xs) ./ xs .* Δ,) @grad prod(xs, dim) = prod(data(xs), dim), Δ -> (nobacksies(:sum, reshape(.*(circshift.([reshape(data(xs), length(xs))], 1:length(xs)-1)...), size(xs)) .* Δ), nothing) Base.findfirst(xs::TrackedArray, args...) = findfirst(xs.data, args...) Base.mean(xs::TrackedArray) = track(mean, xs) Base.mean(xs::TrackedArray, region) = track(mean, xs, region) Base.maximum(xs::TrackedArray) = track(maximum, xs) Base.maximum(xs::TrackedArray, region) = track(maximum, xs, region) Base.minimum(xs::TrackedArray) = track(minimum, xs) Base.minimum(xs::TrackedArray, region) = track(minimum, xs, region) import LinearAlgebra: dot dot(xs::TrackedVector, ys::TrackedVector) = track(dot, xs, ys) dot(xs::AbstractVector, ys::TrackedVector) = track(dot, xs, ys) dot(xs::TrackedVector, ys::AbstractVector) = track(dot, xs, ys) @grad dot(xs, ys) = dot(data(xs), data(ys)), Δ -> (Δ .* ys, Δ .* xs) using StatsBase # Hacks to get std working StatsBase.std(x::TrackedArray; mean = Base.mean(x)) = sqrt.(sum((x .- mean).^2) ./ (length(x)-1)) StatsBase.std(x::TrackedArray, dim; mean = Base.mean(x, dim)) = sqrt.(sum((x .- mean).^2, dim) ./ (size(x, dim)-1)) LinearAlgebra.vecnorm(x::TrackedArray, p::Real = 2) = sum(abs.(x).^p .+ eps(0f0))^(1/p) # avoid d(sqrt(x))/dx == Inf at 0 @grad mean(xs) = mean(data(xs)), Δ -> (Δ / length(xs),) @grad mean(xs, region) = mean(data(xs), region), Δ -> (zero(xs) .+ Δ ./ prod(size(xs, region...)),nothing) @grad function maximum(xs, r...) maximum(data(xs), r...), function (Δ) Δ′ = zero(xs) _, i = findmax(data(xs), r...) Δ′[i] = data(Δ) return (nobacksies(:maximum, Δ′),map(_->nothing,r)...) end end @grad function minimum(xs, r...) minimum(data(xs), r...), function (Δ) Δ′ = zero(xs) _, i = findmin(data(xs), r...) Δ′[i] = data(Δ) return (nobacksies(:minimum, Δ′),map(_->nothing,r)...) end end # BLAS LinearAlgebra.diagm(x::TrackedVector) = track(diagm, x) @grad diagm(x) = diagm(data(x)), Δ -> (diag(Δ),) x::TrackedMatrix * y::AbstractMatrix = track(*, x, y) x::AbstractMatrix * y::TrackedMatrix = track(*, x, y) x::TrackedMatrix * y::TrackedMatrix = track(*, x, y) x::TrackedMatrix * y::AbstractVector = track(*, x, y) x::AbstractMatrix * y::TrackedVector = track(*, x, y) x::TrackedMatrix * y::TrackedVector = track(*, x, y) x::TrackedVector * y::AbstractVector = track(*, x, y) x::AbstractVector * y::TrackedVector = track(*, x, y) x::TrackedVector * y::TrackedVector = track(*, x, y) @grad a::AbstractMatrix * b::AbstractVecOrMat = data(a)*data(b), Δ -> (Δ * transpose(b), transpose(a) * Δ) # @grad function (a::AbstractMatrix * b::AbstractVecOrMat) # # @show size(a) size(b) # data(a)*data(b), function (Δ) # @show size(Δ) size(b) size(Δ*transpose(b)) size(Δ*transpose(data(b))) # @show typeof(Δ) typeof(b) # (Δ * transpose(b), transpose(a) * Δ) # end # end # NNlib using NNlib import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool softmax(xs::TrackedArray) = track(softmax, xs) @grad softmax(xs) = softmax(data(xs)), Δ -> (nobacksies(:softmax, ∇softmax(data(Δ), data(xs))),) logsoftmax(xs::TrackedArray) = track(logsoftmax, xs) @grad logsoftmax(xs) = logsoftmax(data(xs)), Δ -> (nobacksies(:logsoftmax, ∇logsoftmax(data(Δ), data(xs))),) conv(x::TrackedArray, w::TrackedArray; kw...) = track_kw(conv, x, w; kw...) conv(x::AbstractArray, w::TrackedArray; kw...) = track_kw(conv, x, w; kw...) conv(x::TrackedArray, w::AbstractArray; kw...) = track_kw(conv, x, w; kw...) @grad conv(x, w; kw...) = conv(data(x), data(w); kw...), Δ -> nobacksies(:conv, (NNlib.∇conv_data(data.((Δ, x, w))...; kw...), NNlib.∇conv_filter(data.((Δ, x, w))...; kw...))) maxpool(x::TrackedArray, k; kw...) = track_kw(maxpool, x, k; kw...) @grad function maxpool(x, k; kw...) y = maxpool(data(x), k; kw...) y, Δ -> (nobacksies(:maxpool, NNlib.∇maxpool(data.((Δ, y, x))..., k; kw...)), nothing) end meanpool(x::TrackedArray, k; kw...) = track_kw(meanpool, x, k; kw...) @grad function meanpool(x, k; kw...) y = meanpool(data(x), k; kw...) y, Δ -> (nobacksies(:maxpool, NNlib.∇meanpool(data.((Δ, y, x))..., k; kw...)), nothing) end # Broadcasting using ForwardDiff: Dual, partials, value _size(x::AbstractArray) = size(x) _size(x) = () dualify(xs, n) = xs dualify(xs::AbstractArray, ps) = map(x -> Dual(x, ps), xs) dualify(xs::Real, ps) = Dual(xs, ps) unbroadcast(x::Tuple, Δ) = x == size(Δ) ? Δ : reshape(sum(Δ, filter(n -> n > length(x) || x[n] == 1, 1:ndims(Δ))), x) unbroadcast(x::Tuple{}, Δ) = sum(Δ) function getpartial(Δ, x, i) @inbounds p = getindex(partials(x), i) return Δ * p end function ∇broadcast(f, args::Vararg{Any,N}) where N sizes = _size.(args) dargs = map((x,i) -> dualify(data(x), ntuple(j -> i==j, Val(N))), args, ntuple(identity, Val(N))) out = broadcast(f, dargs...) eltype(out) <: Dual || return out y = value.(out) back = function (Δ_) Δ = data(Δ_) Δargs = ntuple(i -> getpartial.(Δ, out, i), Val(N)) dxs = map((x, Δ) -> unbroadcast(x, Δ), sizes, Δargs) nobacksies(:broadcast, dxs) end # So we can return non-tracked arrays track(Call(back, tracker.(args)), y) end using Base.Broadcast: BroadcastStyle struct TrackedStyle <: BroadcastStyle end Broadcast.BroadcastStyle(::Type{<:Union{TrackedArray,TrackedReal}}) = TrackedStyle() Broadcast.BroadcastStyle(::TrackedStyle, ::BroadcastStyle) = TrackedStyle() function Base.copy(bc::Broadcast.Broadcasted{TrackedStyle}) bc = Broadcast.flatten(bc) ∇broadcast(bc.f, bc.args...) end