export onehot, onecold, chunk, partition, batches, sequences convertel(T::Type, xs::AbstractArray) = convert.(T, xs) convertel{T}(::Type{T}, xs::AbstractArray{T}) = xs """ onehot('b', ['a', 'b', 'c', 'd']) => [false, true, false, false] onehot(Float32, 'c', ['a', 'b', 'c', 'd']) => [0., 0., 1., 0.] Produce a one-hot-encoded version of an item, given a list of possible values for the item. """ onehot(T::Type, label, labels) = T[i == label for i in labels] onehot(label, labels) = onehot(Int, label, labels) """ onecold([0.0, 1.0, 0.0, ...], ['a', 'b', 'c', ...]) => 'b' The inverse of `onehot`; takes an output prediction vector and a list of possible values, and produces the appropriate value. """ onecold(pred, labels = 1:length(pred)) = labels[findfirst(pred, maximum(pred))] using Iterators import Iterators: Partition, partition export partition Base.length(l::Partition) = length(l.xs) ÷ l.step _partition(r::UnitRange, step::Integer) = (step*(i-1)+1:step*i for i in 1:(r.stop÷step)) _partition(xs, step) = (xs[i] for i in _partition(1:length(xs), step)) chunk(xs, n) = _partition(xs, length(xs)÷n) batches(xs...) = (Batch(x) for x in zip(xs...)) sequences(xs, len) = (Seq(x) for x in partition(xs, len))