Flux.jl/src/utils.jl

341 lines
7.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Arrays
nfan() = 1, 1 # fan_in, fan_out
nfan(n) = 1, n # A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out # In case of Dense kernels: arranged as matrices
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) # In case of convolution kernels
ofeltype(x, y) = convert(float(eltype(x)), y)
epseltype(x) = eps(float(eltype(x)))
"""
glorot_uniform(dims...)
Return an `Array` of size `dims` containing random variables taken from a uniform
distribution in the interval ``[-x, x]``, where `x = sqrt(24 / sum(dims)) / 2`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_uniform(2, 3)
2×3 Array{Float32,2}:
0.601094 -0.57414 -0.814925
0.900868 0.805994 0.057514
```
"""
glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...)))
"""
glorot_normal(dims...)
Return an `Array` of size `dims` containing random variables taken from a normal
distribution with mean 0 and standard deviation `sqrt(2 / sum(dims))`.
# Examples
```jldoctest; setup = :(using Random; Random.seed!(0))
julia> Flux.glorot_normal(3, 2)
3×2 Array{Float32,2}:
0.429505 -0.0852891
0.523935 0.371009
-0.223261 0.188052
```
"""
glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...)))
ones(T::Type, dims...) = Base.ones(T, dims...)
zeros(T::Type, dims...) = Base.zeros(T, dims...)
ones(dims...) = Base.ones(Float32, dims...)
zeros(dims...) = Base.zeros(Float32, dims...)
"""
unsqueeze(xs, dim)
Return `xs` reshaped into an `Array` one dimensionality higher than `xs`,
where `dim` indicates in which dimension `xs` is extended.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.unsqueeze(xs, 1)
1×3 Array{Array{Int64,1},2}:
[1, 2] [3, 4] [5, 6]
julia> Flux.unsqueeze([1 2; 3 4], 2)
2×1×2 Array{Int64,3}:
[:, :, 1] =
1
3
[:, :, 2] =
2
4
```
"""
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
"""
stack(xs, dim)
Concatenate the given `Array` of `Array`s `xs` into a single `Array` along the
given dimension `dim`.
# Examples
```jldoctest
julia> xs = [[1, 2], [3, 4], [5, 6]]
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
julia> Flux.stack(xs, 1)
3×2 Array{Int64,2}:
1 2
3 4
5 6
julia> cat(xs, dims=1)
3-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
```
"""
stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim)
"""
unstack(xs, dim)
Unroll the given `xs` into an `Array` of `Array`s along the given dimension `dim`.
# Examples
```jldoctest
julia> Flux.unstack([1 3 5 7; 2 4 6 8], 2)
4-element Array{Array{Int64,1},1}:
[1, 2]
[3, 4]
[5, 6]
[7, 8]
```
"""
unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
"""
chunk(xs, n)
Split `xs` into `n` parts.
# Examples
```jldoctest
julia> Flux.chunk(1:10, 3)
3-element Array{UnitRange{Int64},1}:
1:4
5:8
9:10
julia> Flux.chunk(collect(1:10), 3)
3-element Array{SubArray{Int64,1,Array{Int64,1},Tuple{UnitRange{Int64}},true},1}:
[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10]
```
"""
chunk(xs, n) = collect(Iterators.partition(xs, ceil(Int, length(xs)/n)))
batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i)
"""
frequencies(xs)
Count the number of times that each element of `xs` appears.
# Examples
```jldoctest
julia> Flux.frequencies(['a','b','b'])
Dict{Char,Int64} with 2 entries:
'a' => 1
'b' => 2
```
"""
function frequencies(xs)
fs = Dict{eltype(xs),Int}()
for x in xs
fs[x] = get(fs, x, 0) + 1
end
return fs
end
head(x::Tuple) = reverse(Base.tail(reverse(x)))
squeezebatch(x) = reshape(x, head(size(x)))
"""
batch(xs)
Batch the arrays in `xs` into a single array.
# Examples
```jldoctest
julia> Flux.batch([[1,2,3],[4,5,6]])
3×2 Array{Int64,2}:
1 4
2 5
3 6
```
"""
function batch(xs)
data = first(xs) isa AbstractArray ?
similar(first(xs), size(first(xs))..., length(xs)) :
Vector{eltype(xs)}(undef, length(xs))
for (i, x) in enumerate(xs)
data[batchindex(data, i)...] = x
end
return data
end
"""
Return the given sequence padded with `p` up to a maximum length of `n`.
# Examples
```jldoctest
julia> rpad([1, 2], 4, 0)
4-element Array{Int64,1}:
1
2
0
0
julia> rpad([1, 2, 3], 2, 0)
3-element Array{Int64,1}:
1
2
3
```
"""
Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))]
"""
batchseq(seqs, pad)
Take a list of `N` sequences, and turn them into a single sequence where each
item is a batch of `N`. Short sequences will be padded by `pad`.
# Examples
```jldoctest
julia> Flux.batchseq([[1, 2, 3], [4, 5]], 0)
3-element Array{Array{Int64,1},1}:
[1, 4]
[2, 5]
[3, 0]
```
"""
function batchseq(xs, pad = nothing, n = maximum(length(x) for x in xs))
xs_ = [rpad(x, n, pad) for x in xs]
[batch([xs_[j][i] for j = 1:length(xs_)]) for i = 1:n]
end
# Flattening models to weight vectors, and back
function _restructure(m, xs)
i = 0
fmap(m) do x
x isa AbstractArray || return x
x = reshape(xs[i.+(1:length(x))], size(x))
i += length(x)
return x
end
end
"""
destructure(m)
Flatten a model's parameters into a single weight vector.
julia> m = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
julia> θ, re = destructure(m);
julia> θ
67-element Array{Float32,1}:
-0.1407104
...
The second return value `re` allows you to reconstruct the original network after making
modifications to the weight vector (for example, with a hypernetwork).
julia> re(θ .* 2)
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
"""
function destructure(m)
xs = Zygote.Buffer([])
fmap(m) do x
x isa AbstractArray && push!(xs, x)
return x
end
return vcat(vec.(copy(xs))...), p -> _restructure(m, p)
end
# Other
"""
throttle(f, timeout; leading=true, trailing=false)
Return a function that when invoked, will only be triggered at most once
during `timeout` seconds.
Normally, the throttled function will run as much as it can, without ever
going more than once per `wait` duration; but if you'd like to disable the
execution on the leading edge, pass `leading=false`. To enable execution on
the trailing edge, pass `trailing=true`.
"""
function throttle(f, timeout; leading=true, trailing=false)
cooldown = true
later = nothing
result = nothing
function throttled(args...; kwargs...)
yield()
if cooldown
if leading
result = f(args...; kwargs...)
else
later = () -> f(args...; kwargs...)
end
cooldown = false
@async try
while (sleep(timeout); later != nothing)
later()
later = nothing
end
finally
cooldown = true
end
elseif trailing
later = () -> (result = f(args...; kwargs...))
end
return result
end
end
"""
@jit ...
The `@jit` annotation can be applied to any code, and the code will be compiled
for performance.
@jit f(x) = @jit(x) + @jit(x)
Note that compilation happens regardless of the `@jit` macro, so it should only
be used for aesthetic purposes, or by recovering Python users.
"""
macro jit(ex)
esc(ex)
end