Flux.jl/src/optimise/optimisers.jl
Martijn Visser 32e0aa9fcb docstring ensure signature code formatting
by using a four space indent instead of two
2020-03-01 15:15:39 +01:00

529 lines
12 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Flux
using MacroTools: @forward
const ϵ = 1e-8
# TODO: should use weak refs
"""
Descent(η)
Classic gradient descent optimiser with learning rate `η`.
For each parameter `p` and its gradient `δp`, this runs `p -= η*δp`
## Parameters
- Learning Rate (η): The amount by which the gradients are discounted before updating the weights. Defaults to `0.1`.
## Example
```julia-repl
opt = Descent() # uses default η (0.1)
opt = Descent(0.3) # use provided η
ps = params(model)
gs = gradient(ps) do
loss(x, y)
end
Flux.Optimise.update!(opt, ps, gs)
```
"""
mutable struct Descent
eta::Float64
end
Descent() = Descent(0.1)
function apply!(o::Descent, x, Δ)
Δ .*= o.eta
end
"""
Momentum(η, ρ)
Gradient descent with learning rate `η` and momentum `ρ`.
## Parameters
- Learning Rate (`η`): Amount by which gradients are discounted before updating the weights. Defaults to `0.01`.
- Momentum (`ρ`): Parameter that accelerates descent in the relevant direction and dampens oscillations. Defaults to `0.9`.
## Examples
```julia
opt = Momentum() # uses defaults of η = 0.01 and ρ = 0.9
opt = Momentum(0.01, 0.99)
```
"""
mutable struct Momentum
eta::Float64
rho::Float64
velocity::IdDict
end
Momentum(η = 0.01, ρ = 0.9) = Momentum(η, ρ, IdDict())
function apply!(o::Momentum, x, Δ)
η, ρ = o.eta, o.rho
v = get!(o.velocity, x, zero(x))::typeof(x)
@. v = ρ * v - η * Δ
@. Δ = -v
end
"""
Nesterov(η, ρ)
Gradient descent with learning rate `η` and Nesterov momentum `ρ`.
## Parameters
- Learning Rate (η): Amount by which the gradients are dicsounted berfore updating the weights. Defaults to `0.001`.
- Nesterov Momentum (ρ): Paramters controlling the amount of nesterov momentum to be applied. Defaults to `0.9`.
## Examples
```julia
opt = Nesterov() # uses defaults η = 0.001 and ρ = 0.9
opt = Nesterov(0.003, 0.95)
```
"""
mutable struct Nesterov
eta::Float64
rho::Float64
velocity::IdDict
end
Nesterov(η = 0.001, ρ = 0.9) = Nesterov(η, ρ, IdDict())
function apply!(o::Nesterov, x, Δ)
η, ρ = o.eta, o.rho
v = get!(o.velocity, x, zero(x))::typeof(x)
d = @. ρ^2 * v - (1+ρ) * η * Δ
@. v = ρ*v - η*Δ
@. Δ = -d
end
"""
RMSProp(η, ρ)
Implements the RMSProp algortihm. Often a good choice for recurrent networks. Paramters other than learning rate generally don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Rho (ρ): Defaults to `0.9`.
## Examples
```julia
opt = RMSProp() # uses default η = 0.001 and ρ = 0.9
opt = RMSProp(0.002, 0.95)
```
## References
[RMSProp](https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
"""
mutable struct RMSProp
eta::Float64
rho::Float64
acc::IdDict
end
RMSProp(η = 0.001, ρ = 0.9) = RMSProp(η, ρ, IdDict())
function apply!(o::RMSProp, x, Δ)
η, ρ = o.eta, o.rho
acc = get!(o.acc, x, zero(x))::typeof(x)
@. acc = ρ * acc + (1 - ρ) * Δ^2
@. Δ *= η / (acc + ϵ)
end
"""
ADAM(η, β::Tuple)
Implements the ADAM optimiser.
## Paramters
- Learning Rate (`η`): Defaults to `0.001`.
- Beta (`β::Tuple`): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
```julia
opt = ADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = ADAM(0.001, (0.9, 0.8))
```
## References
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
"""
mutable struct ADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict
end
ADAM(η = 0.001, β = (0.9, 0.999)) = ADAM(η, β, IdDict())
function apply!(o::ADAM, x, Δ)
η, β = o.eta, o.beta
mt, vt, βp = get!(o.state, x, (zero(x), zero(x), β))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
@. Δ = mt / (1 - βp[1]) / ((vt / (1 - βp[2])) + ϵ) * η
o.state[x] = (mt, vt, βp .* β)
return Δ
end
"""
RADAM(η, β::Tuple)
Implements the rectified ADAM optimizer.
## Parameters
- Learning Rate (η): Defaults to `0.001`
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
```julia
opt = RADAM() # uses the default η = 0.001 and β = (0.9, 0.999)
opt = RADAM(0.001, (0.9, 0.8))
```
## References
[RADAM](https://arxiv.org/pdf/1908.03265v1.pdf) optimiser (Rectified ADAM).
"""
mutable struct RADAM
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict
end
RADAM(η = 0.001, β = (0.9, 0.999)) = RADAM(η, β, IdDict())
function apply!(o::RADAM, x, Δ)
η, β = o.eta, o.beta
ρ∞ = 2/(1-β[2])-1
mt, vt, βp, t = get!(o.state, x, (zero(x), zero(x), β, 1))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
ρ = ρ∞ - 2t*βp[2]/(1-βp[2])
if ρ > 4
r = sqrt((ρ-4)*(ρ-2)*ρ∞/((ρ∞-4)*(ρ∞-2)*ρ))
@. Δ = mt / (1 - βp[1]) / ((vt / (1 - βp[2])) + ϵ) * η * r
else
@. Δ = mt / (1 - βp[1]) * η
end
o.state[x] = (mt, vt, βp .* β, t+1)
return Δ
end
"""
AdaMax(η, β::Tuple)
Variant of ADAM based on ∞-norm.
## Parameters
- Learning Rate (η): Defaults to `0.001`
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
```julia
opt = AdaMax() # uses default η and β
opt = AdaMax(0.001, (0.9, 0.995))
```
## References
[AdaMax](https://arxiv.org/abs/1412.6980v9) optimiser.
"""
mutable struct AdaMax
eta::Float64
beta::Tuple{Float64,Float64}
state::IdDict
end
AdaMax(η = 0.001, β = (0.9, 0.999)) = AdaMax(η, β, IdDict())
function apply!(o::AdaMax, x, Δ)
η, β = o.eta, o.beta
mt, ut, βp = get!(o.state, x, (zero(x), zero(x), β))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. ut = max(β[2] * ut, abs(Δ))
@. Δ = (η/(1 - βp[1])) * mt/(ut + ϵ)
o.state[x] = (mt, ut, βp .* β)
return Δ
end
"""
ADAGrad(η)
Implements AdaGrad. It has parameter specific learning rates based on how frequently it is updated.
## Parameters
- Learning Rate (η): Defaults to `0.1`
## Examples
```julia
opt = ADAGrad() # uses default η = 0.1
opt = ADAGrad(0.001)
```
## References
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
Parameters don't need tuning.
"""
mutable struct ADAGrad
eta::Float64
acc::IdDict
end
ADAGrad(η = 0.1) = ADAGrad(η, IdDict())
function apply!(o::ADAGrad, x, Δ)
η = o.eta
acc = get!(o.acc, x, fill!(zero(x), ϵ))::typeof(x)
@. acc += Δ^2
@. Δ *= η / (acc + ϵ)
end
"""
ADADelta(ρ)
Version of ADAGrad that adapts learning rate based on a window of past gradient updates. Parameters don't need tuning.
## Parameters
- Rho (ρ): Factor by which gradient is decayed at each time step. Defaults to `0.9`.
## Examples
```julia
opt = ADADelta() # uses default ρ = 0.9
opt = ADADelta(0.89)
```
## References
[ADADelta](https://arxiv.org/abs/1212.5701) optimiser.
"""
mutable struct ADADelta
rho::Float64
state::IdDict
end
ADADelta(ρ = 0.9) = ADADelta(ρ, IdDict())
function apply!(o::ADADelta, x, Δ)
ρ = o.rho
acc, Δacc = get!(o.state, x, (zero(x), zero(x)))
@. acc = ρ * acc + (1 - ρ) * Δ^2
@. Δ *= Δacc/ (acc + ϵ)
@. Δacc = ρ * Δacc + (1 - ρ) * Δ^2
return Δ
end
"""
AMSGrad(η, β::Tuple)
Implements AMSGrad version of the ADAM optimiser. Parameters don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
```julia
opt = AMSGrad() # uses default η and β
opt = AMSGrad(0.001, (0.89, 0.995))
```
## References
[AMSGrad](https://openreview.net/forum?id=ryQu7f-RZ) optimiser.
"""
mutable struct AMSGrad
eta::Float64
beta::Tuple{Float64, Float64}
state::IdDict
end
AMSGrad(η = 0.001, β = (0.9, 0.999)) = AMSGrad(η, β, IdDict())
function apply!(o::AMSGrad, x, Δ)
η, β = o.eta, o.beta
mt, vt, v̂t = get!(o.state, x, (fill!(zero(x), ϵ), fill!(zero(x), ϵ), fill!(zero(x), ϵ)))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ ^ 2
@. v̂t = max(v̂t, vt)
@. Δ = η * mt / (v̂t + ϵ)
end
"""
NADAM(η, β::Tuple)
Nesterov variant of ADAM. Parameters don't need tuning.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to `(0.9, 0.999)`.
## Examples
```julia
opt = NADAM() # uses default η and β
opt = NADAM(0.002, (0.89, 0.995))
```
## References
[NADAM](http://cs229.stanford.edu/proj2015/054_report.pdf) optimiser.
"""
mutable struct NADAM
eta::Float64
beta::Tuple{Float64, Float64}
state::IdDict
end
NADAM(η = 0.001, β = (0.9, 0.999)) = NADAM(η, β, IdDict())
function apply!(o::NADAM, x, Δ)
η, β = o.eta, o.beta
mt, vt, (β1p, β2p) = get!(o.state, x, (zero(x), zero(x), o.beta))
@. mt = β[1] * mt + (1 - β[1]) * Δ
@. vt = β[2] * vt + (1 - β[2]) * Δ^2
@. Δ = (β[1] * mt / (1 - β[1] * β1p) + (1 - β[1]) * Δ / (1 - β1p)) / ((vt * β[2] / (1 - β2p)) + ϵ) * η
o.state[x] = (mt, vt, (β1p * β[1], β2p * β[2]))
return Δ
end
"""
ADAMW(η, β::Tuple, decay)
Variant of ADAM defined by fixing weight decay regularization.
## Parameters
- Learning Rate (η): Defaults to `0.001`.
- Beta (β::Tuple): The first element refers to β1 and the second to β2. Defaults to (0.9, 0.999).
- decay: Decay applied to weights during optimisation. Defaults to 0.
## Examples
```julia
opt = ADAMW() # uses default η, β and decay
opt = ADAMW(0.001, (0.89, 0.995), 0.1)
```
## References
[ADAMW](https://arxiv.org/abs/1711.05101)
"""
ADAMW(η = 0.001, β = (0.9, 0.999), decay = 0) =
Optimiser(ADAM(η, β), WeightDecay(decay))
# Compose optimizers
"""
Optimiser(a, b, c...)
Combine several optimisers into one; each optimiser produces a modified gradient
that will be fed into the next, and this is finally applied to the parameter as
usual.
"""
mutable struct Optimiser
os::Vector{Any}
end
Optimiser(o...) = Optimiser(Any[o...])
@forward Optimiser.os Base.getindex, Base.first, Base.last, Base.lastindex, Base.push!, Base.setindex!
@forward Optimiser.os Base.iterate
Base.getindex(c::Optimiser, i::AbstractArray) = Optimiser(c.os[i]...)
function apply!(o::Optimiser, x, Δ)
for opt in o.os
Δ = apply!(opt, x, Δ)
end
return Δ
end
"""
InvDecay(γ)
Applies inverse time decay to an optimiser, i.e., the effective step size at iteration `n` is `eta / (1 + γ * n)` where `eta` is the initial step size. The wrapped optimiser's step size is not modified.
```
## Parameters
- gamma (γ): Defaults to `0.001`
## Example
```julia
Optimiser(InvDecay(..), Opt(..))
```
"""
mutable struct InvDecay
gamma::Float64
state::IdDict
end
InvDecay(γ = 0.001) = InvDecay(γ, IdDict())
function apply!(o::InvDecay, x, Δ)
γ = o.gamma
n = get!(o.state, x, 1)
Δ .*= 1 / (1 + γ * n)
o.state[x] = n + 1
return Δ
end
"""
ExpDecay(eta, decay, decay_step, clip)
Discount the learning rate `eta` by a multiplicative factor `decay` every `decay_step` till a minimum of `clip`.
## Parameters
- Learning Rate (eta): Defaults to `0.001`.
- decay: Factor by which the learning rate is discounted. Defaults to `0.1`.
- decay_step: Schedules decay operations by setting number of steps between two decay operations. Defaults to `1000`.
- clip: Minimum value of learning rate. Defaults to `1e-4`.
## Example
To apply exponential decay to an optimiser:
```julia
Optimiser(ExpDecay(..), Opt(..))
opt = Optimiser(ExpDecay(), ADAM())
```
"""
mutable struct ExpDecay
eta::Float64
decay::Float64
step::Int64
clip::Float64
current::IdDict
end
ExpDecay(opt = 0.001, decay = 0.1, decay_step = 1000, clip = 1e-4) = ExpDecay(opt, decay, decay_step, clip, IdDict())
function apply!(o::ExpDecay, x, Δ)
η, s, decay = o.eta, o.step, o.decay
n = o.current[x] = get(o.current, x, 0) + 1
if o.current[x]%s == 0 && count(x -> x%s == 0, values(o.current)) == 1
η = max(η * decay^(s / n), o.clip)
o.eta = η
end
@. Δ *= η
end
"""
WeightDecay(wd)
Decays the weight by `wd`
## Parameters
- weight decay (wd): 0
"""
mutable struct WeightDecay
wd::Real
end
WeightDecay() = WeightDecay(0)
function apply!(o::WeightDecay, x, Δ)
wd = o.wd
@. Δ += wd * x
end