Flux.jl/test/layers/normalisation.jl
2018-08-11 17:20:27 +05:30

99 lines
2.3 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Flux: testmode!
@testset "Dropout" begin
x = [1.,2.,3.]
@test x == testmode!(Dropout(0.1))(x)
@test x == Dropout(0)(x)
@test zero(x) == Dropout(1)(x)
x = rand(100)
m = Dropout(0.9)
y = m(x)
@test count(a->a==0, y) > 50
testmode!(m)
y = m(x)
@test count(a->a==0, y) == 0
testmode!(m, false)
y = m(x)
@test count(a->a==0, y) > 50
x = rand(100)
m = Chain(Dense(100,100),
Dropout(0.9))
y = m(x)
@test count(a->a == 0, y) > 50
testmode!(m)
y = m(x)
@test count(a->a == 0, y) == 0
end
@testset "BatchNorm" begin
let m = BatchNorm(2), x = param([1 2; 3 4; 5 6]')
@test m.β.data == [0, 0] # initβ(2)
@test m.γ.data == [1, 1] # initγ(2)
# initial m.σ is 1
# initial m.μ is 0
@test m.active
# @test m(x).data ≈ [-1 -1; 0 0; 1 1]'
m(x)
# julia> x
# 2×3 Array{Float64,2}:
# 1.0 3.0 5.0
# 2.0 4.0 6.0
#
# μ of batch will be
# (1. + 3. + 5.) / 3 = 3
# (2. + 4. + 6.) / 3 = 4
#
# ∴ update rule with momentum:
# .1 * 3 + 0 = .3
# .1 * 4 + 0 = .4
@test m.μ reshape([0.3, 0.4], 2, 1)
# julia> .1 .* std(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
# 2×1 Array{Float64,2}:
# 1.14495
# 1.14495
@test m.σ .1 .* std(x.data, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
testmode!(m)
@test !m.active
x = m(x).data
@test x[1] (1 .- 0.3) / 1.1449489742783179
end
# with activation function
let m = BatchNorm(2, σ), x = param([1 2; 3 4; 5 6]')
@test m.active
m(x)
testmode!(m)
@test !m.active
x = m(x).data
@test x[1] σ((1 - 0.3) / 1.1449489742783179)
end
let m = BatchNorm(2), x = param(reshape(1:6, 3, 2, 1))
y = reshape(permutedims(x, [2, 1, 3]), 2, :)
y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3])
@test m(x) == y
end
let m = BatchNorm(2), x = param(reshape(1:12, 2, 3, 2, 1))
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
@test m(x) == y
end
let m = BatchNorm(2), x = param(reshape(1:24, 2, 2, 3, 2, 1))
y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :)
y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
@test m(x) == y
end
end