156 lines
3.4 KiB
Julia
156 lines
3.4 KiB
Julia
# Arrays
|
||
|
||
initn(dims...) = randn(dims...)/100
|
||
glorot_uniform(dims...) = (rand(dims...) - 0.5)*sqrt(24.0/(sum(dims)))
|
||
glorot_normal(dims...) = (randn(dims...)*sqrt(2.0/sum(dims)))
|
||
|
||
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
|
||
|
||
stack(xs, dim) = cat(dim, unsqueeze.(xs, dim)...)
|
||
unstack(xs, dim) = [slicedim(xs, dim, i) for i = 1:size(xs, dim)]
|
||
|
||
"""
|
||
chunk(xs, n)
|
||
|
||
Split `xs` into `n` parts.
|
||
|
||
```julia
|
||
julia> chunk(1:10, 3)
|
||
3-element Array{Array{Int64,1},1}:
|
||
[1, 2, 3, 4]
|
||
[5, 6, 7, 8]
|
||
[9, 10]
|
||
```
|
||
"""
|
||
chunk(xs, n) = collect(Iterators.partition(xs, ceil(Int, length(xs)/n)))
|
||
|
||
batchindex(xs, i) = (reverse(Base.tail(reverse(indices(xs))))..., i)
|
||
|
||
"""
|
||
frequencies(xs)
|
||
|
||
Count the number of times that each element of `xs` appears.
|
||
|
||
```julia
|
||
julia> frequencies(['a','b','b'])
|
||
Dict{Char,Int64} with 2 entries:
|
||
'b' => 2
|
||
'a' => 1
|
||
```
|
||
"""
|
||
function frequencies(xs)
|
||
fs = Dict{eltype(xs),Int}()
|
||
for x in xs
|
||
fs[x] = get(fs, x, 0) + 1
|
||
end
|
||
return fs
|
||
end
|
||
|
||
head(x::Tuple) = reverse(Base.tail(reverse(x)))
|
||
|
||
squeezebatch(x) = reshape(x, head(size(x)))
|
||
|
||
"""
|
||
batch(xs)
|
||
|
||
Batch the arrays in `xs` into a single array.
|
||
|
||
```julia
|
||
julia> batch([[1,2,3],[4,5,6]])
|
||
3×2 Array{Int64,2}:
|
||
1 4
|
||
2 5
|
||
3 6
|
||
```
|
||
"""
|
||
function batch(xs)
|
||
data = first(xs) isa AbstractArray ?
|
||
similar(first(xs), size(first(xs))..., length(xs)) :
|
||
Vector{eltype(xs)}(length(xs))
|
||
for (i, x) in enumerate(xs)
|
||
data[batchindex(data, i)...] = x
|
||
end
|
||
return data
|
||
end
|
||
|
||
Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))]
|
||
|
||
"""
|
||
batchseq(seqs, pad)
|
||
|
||
Take a list of `N` sequences, and turn them into a single sequence where each
|
||
item is a batch of `N`. Short sequences will be padded by `pad`.
|
||
|
||
```julia
|
||
julia> batchseq([[1, 2, 3], [4, 5]], 0)
|
||
3-element Array{Array{Int64,1},1}:
|
||
[1, 4]
|
||
[2, 5]
|
||
[3, 0]
|
||
```
|
||
"""
|
||
function batchseq(xs, pad = nothing, n = maximum(length(x) for x in xs))
|
||
xs_ = [rpad(x, n, pad) for x in xs]
|
||
[batch([xs_[j][i] for j = 1:length(xs_)]) for i = 1:n]
|
||
end
|
||
|
||
# Other
|
||
|
||
"""
|
||
Returns a function that when invoked, will only be triggered at most once
|
||
during `timeout` seconds. Normally, the throttled function will run
|
||
as much as it can, without ever going more than once per `wait` duration;
|
||
but if you'd like to disable the execution on the leading edge, pass
|
||
`leading=false`. To enable execution on the trailing edge, ditto.
|
||
"""
|
||
function throttle(f, timeout; leading=true, trailing=false)
|
||
cooldown = true
|
||
later = nothing
|
||
result = nothing
|
||
|
||
function throttled(args...; kwargs...)
|
||
yield()
|
||
|
||
if cooldown
|
||
if leading
|
||
result = f(args...; kwargs...)
|
||
else
|
||
later = () -> f(args...; kwargs...)
|
||
end
|
||
|
||
cooldown = false
|
||
@schedule try
|
||
while (sleep(timeout); later != nothing)
|
||
later()
|
||
later = nothing
|
||
end
|
||
finally
|
||
cooldown = true
|
||
end
|
||
elseif trailing
|
||
later = () -> (result = f(args...; kwargs...))
|
||
end
|
||
|
||
return result
|
||
end
|
||
end
|
||
|
||
"""
|
||
J = jacobian(m,x)
|
||
|
||
Calculate the output jacobian `J = d/dx m(x)` such that each row `i` of `J` corresponds to the gradient `J[i,:] = ∇ₓ(m(x)[i])`
|
||
"""
|
||
function jacobian(m,x)
|
||
xp = param(x)
|
||
y = m(xp)
|
||
k = length(y)
|
||
n = length(x)
|
||
J = Matrix{eltype(x)}(n,k)
|
||
for i = 1:k
|
||
Flux.back!(y[i]) # Populate gradient accumulator
|
||
J[:,i] = xp.grad
|
||
xp.grad .*= 0 # Reset gradient accumulator
|
||
end
|
||
J'
|
||
end
|