37 lines
875 B
Julia
37 lines
875 B
Julia
using Flux
|
|
import StatsBase: wsample
|
|
|
|
nunroll = 50
|
|
nbatch = 50
|
|
|
|
getseqs(chars, alphabet) = sequences((onehot(Float32, char, alphabet) for char in chars), nunroll)
|
|
getbatches(chars, alphabet) = batches((getseqs(part, alphabet) for part in chunk(chars, nbatch))...)
|
|
|
|
input = readstring("$(homedir())/Downloads/shakespeare_input.txt")
|
|
alphabet = unique(input)
|
|
N = length(alphabet)
|
|
|
|
Xs, Ys = getbatches(input, alphabet), getbatches(input[2:end], alphabet)
|
|
|
|
model = Chain(
|
|
Input(N),
|
|
LSTM(N, 256),
|
|
LSTM(256, 256),
|
|
Affine(256, N),
|
|
softmax)
|
|
|
|
m = tf(unroll(model, nunroll))
|
|
|
|
@time Flux.train!(m, Xs, Ys, η = 0.1, epoch = 1)
|
|
|
|
function sample(model, n, temp = 1)
|
|
s = [rand(alphabet)]
|
|
m = tf(unroll(model, 1))
|
|
for i = 1:n
|
|
push!(s, wsample(alphabet, softmax(m(Seq((onehot(Float32, s[end], alphabet),)))[1]./temp)))
|
|
end
|
|
return string(s...)
|
|
end
|
|
|
|
sample(model, 100)
|