33 lines
7.8 KiB
HTML
33 lines
7.8 KiB
HTML
<!DOCTYPE html>
|
|
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>DataLoader · Flux</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
|
|
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
|
|
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
|
|
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
|
|
|
|
ga('create', 'UA-36890222-9', 'auto');
|
|
ga('send', 'pageview', {'page': location.pathname + location.search + location.hash});
|
|
</script><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL="../.."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../../assets/documenter.js"></script><script src="../../siteinfo.js"></script><script src="../../../versions.js"></script><link href="../../assets/flux.css" rel="stylesheet" type="text/css"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-dark.css" data-theme-name="documenter-dark"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../../assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><div class="docs-package-name"><span class="docs-autofit">Flux</span></div><form class="docs-search" action="../../search/"><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="../../">Home</a></li><li><span class="tocitem">Building Models</span><ul><li><a class="tocitem" href="../../models/basics/">Basics</a></li><li><a class="tocitem" href="../../models/recurrence/">Recurrence</a></li><li><a class="tocitem" href="../../models/regularisation/">Regularisation</a></li><li><a class="tocitem" href="../../models/layers/">Model Reference</a></li><li><a class="tocitem" href="../../models/advanced/">Advanced Model Building</a></li><li><a class="tocitem" href="../../models/nnlib/">NNlib</a></li></ul></li><li><span class="tocitem">Handling Data</span><ul><li><a class="tocitem" href="../onehot/">One-Hot Encoding</a></li><li class="is-active"><a class="tocitem" href>DataLoader</a></li></ul></li><li><span class="tocitem">Training Models</span><ul><li><a class="tocitem" href="../../training/optimisers/">Optimisers</a></li><li><a class="tocitem" href="../../training/training/">Training</a></li></ul></li><li><a class="tocitem" href="../../gpu/">GPU Support</a></li><li><a class="tocitem" href="../../saving/">Saving & Loading</a></li><li><a class="tocitem" href="../../ecosystem/">The Julia Ecosystem</a></li><li><a class="tocitem" href="../../utilities/">Utility Functions</a></li><li><a class="tocitem" href="../../performance/">Performance Tips</a></li><li><a class="tocitem" href="../../datasets/">Datasets</a></li><li><a class="tocitem" href="../../community/">Community</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li><a class="is-disabled">Handling Data</a></li><li class="is-active"><a href>DataLoader</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>DataLoader</a></li></ul></nav><div class="docs-right"><a class="docs-edit-link" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/data/dataloader.md" title="Edit on GitHub"><span class="docs-icon fab"></span><span class="docs-label is-hidden-touch">Edit on GitHub</span></a><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article class="content" id="documenter-page"><h1 id="DataLoader-1"><a class="docs-heading-anchor" href="#DataLoader-1">DataLoader</a><a class="docs-heading-anchor-permalink" href="#DataLoader-1" title="Permalink"></a></h1><p>Flux provides the <code>DataLoader</code> type in the <code>Flux.Data</code> module to handle iteration over mini-batches of data. </p><article class="docstring"><header><a class="docstring-binding" id="Flux.Data.DataLoader" href="#Flux.Data.DataLoader"><code>Flux.Data.DataLoader</code></a> — <span class="docstring-category">Type</span></header><section><div><pre><code class="language-julia">DataLoader(data...; batchsize=1, shuffle=false, partial=true)</code></pre><p>An object that iterates over mini-batches of <code>data</code>, each mini-batch containing <code>batchsize</code> observations (except possibly the last one). </p><p>Takes as input one or more data tensors, e.g. X in unsupervised learning, X and Y in supervised learning. The last dimension in each tensor is considered to be the observation dimension. </p><p>If <code>shuffle=true</code>, shuffles the observations each time iterations are re-started. If <code>partial=false</code>, drops the last mini-batch if it is smaller than the batchsize.</p><p>The original data is preserved as a tuple in the <code>data</code> field of the DataLoader. </p><p>Example usage:</p><pre><code class="language-none">Xtrain = rand(10, 100)
|
|
train_loader = DataLoader(Xtrain, batchsize=2)
|
|
# iterate over 50 mini-batches of size 2
|
|
for x in train_loader
|
|
@assert size(x) == (10, 2)
|
|
...
|
|
end
|
|
|
|
train_loader.data # original dataset
|
|
|
|
Xtrain = rand(10, 100)
|
|
Ytrain = rand(100)
|
|
train_loader = DataLoader(Xtrain, Ytrain, batchsize=2, shuffle=true)
|
|
for epoch in 1:100
|
|
for (x, y) in train_loader
|
|
@assert size(x) == (10, 2)
|
|
@assert size(y) == (2,)
|
|
...
|
|
end
|
|
end
|
|
|
|
# train for 10 epochs
|
|
using IterTools: ncycle
|
|
Flux.train!(loss, ps, ncycle(train_loader, 10), opt)</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/ddd0f4e747347555894f71ae275ac3906fc87b9e/src/data/dataloader.jl#L13-L54">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../onehot/">« One-Hot Encoding</a><a class="docs-footer-nextpage" href="../../training/optimisers/">Optimisers »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Wednesday 27 May 2020 11:52">Wednesday 27 May 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
|