40 lines
8.3 KiB
HTML
40 lines
8.3 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Regularisation · Flux</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
|
||
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
|
||
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
|
||
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
|
||
|
||
ga('create', 'UA-36890222-9', 'auto');
|
||
ga('send', 'pageview', {'page': location.pathname + location.search + location.hash});
|
||
</script><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/fontawesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/solid.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.11.2/css/brands.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/KaTeX/0.11.1/katex.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL="../.."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.3.6/require.min.js" data-main="../../assets/documenter.js"></script><script src="../../siteinfo.js"></script><script src="../../../versions.js"></script><link href="../../assets/flux.css" rel="stylesheet" type="text/css"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-dark.css" data-theme-name="documenter-dark"/><link class="docs-theme-link" rel="stylesheet" type="text/css" href="../../assets/themes/documenter-light.css" data-theme-name="documenter-light" data-theme-primary/><script src="../../assets/themeswap.js"></script></head><body><div id="documenter"><nav class="docs-sidebar"><div class="docs-package-name"><span class="docs-autofit">Flux</span></div><form class="docs-search" action="../../search/"><input class="docs-search-query" id="documenter-search-query" name="q" type="text" placeholder="Search docs"/></form><ul class="docs-menu"><li><a class="tocitem" href="../../">Home</a></li><li><span class="tocitem">Building Models</span><ul><li><a class="tocitem" href="../basics/">Basics</a></li><li><a class="tocitem" href="../recurrence/">Recurrence</a></li><li class="is-active"><a class="tocitem" href>Regularisation</a></li><li><a class="tocitem" href="../layers/">Model Reference</a></li><li><a class="tocitem" href="../advanced/">Advanced Model Building</a></li><li><a class="tocitem" href="../nnlib/">NNlib</a></li></ul></li><li><span class="tocitem">Handling Data</span><ul><li><a class="tocitem" href="../../data/onehot/">One-Hot Encoding</a></li><li><a class="tocitem" href="../../data/dataloader/">DataLoader</a></li></ul></li><li><span class="tocitem">Training Models</span><ul><li><a class="tocitem" href="../../training/optimisers/">Optimisers</a></li><li><a class="tocitem" href="../../training/training/">Training</a></li></ul></li><li><a class="tocitem" href="../../gpu/">GPU Support</a></li><li><a class="tocitem" href="../../saving/">Saving & Loading</a></li><li><a class="tocitem" href="../../ecosystem/">The Julia Ecosystem</a></li><li><a class="tocitem" href="../../utilities/">Utility Functions</a></li><li><a class="tocitem" href="../../performance/">Performance Tips</a></li><li><a class="tocitem" href="../../datasets/">Datasets</a></li><li><a class="tocitem" href="../../community/">Community</a></li></ul><div class="docs-version-selector field has-addons"><div class="control"><span class="docs-label button is-static is-size-7">Version</span></div><div class="docs-selector control is-expanded"><div class="select is-fullwidth is-size-7"><select id="documenter-version-selector"></select></div></div></div></nav><div class="docs-main"><header class="docs-navbar"><nav class="breadcrumb"><ul class="is-hidden-mobile"><li><a class="is-disabled">Building Models</a></li><li class="is-active"><a href>Regularisation</a></li></ul><ul class="is-hidden-tablet"><li class="is-active"><a href>Regularisation</a></li></ul></nav><div class="docs-right"><a class="docs-edit-link" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/models/regularisation.md" title="Edit on GitHub"><span class="docs-icon fab"></span><span class="docs-label is-hidden-touch">Edit on GitHub</span></a><a class="docs-settings-button fas fa-cog" id="documenter-settings-button" href="#" title="Settings"></a><a class="docs-sidebar-button fa fa-bars is-hidden-desktop" id="documenter-sidebar-button" href="#"></a></div></header><article class="content" id="documenter-page"><h1 id="Regularisation-1"><a class="docs-heading-anchor" href="#Regularisation-1">Regularisation</a><a class="docs-heading-anchor-permalink" href="#Regularisation-1" title="Permalink"></a></h1><p>Applying regularisation to model parameters is straightforward. We just need to apply an appropriate regulariser, such as <code>norm</code>, to each model parameter and add the result to the overall loss.</p><p>For example, say we have a simple regression.</p><pre><code class="language-julia">using Flux: crossentropy
|
||
m = Dense(10, 5)
|
||
loss(x, y) = crossentropy(softmax(m(x)), y)</code></pre><p>We can regularise this by taking the (L2) norm of the parameters, <code>m.W</code> and <code>m.b</code>.</p><pre><code class="language-julia">using LinearAlgebra
|
||
|
||
penalty() = norm(m.W) + norm(m.b)
|
||
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()</code></pre><p>When working with layers, Flux provides the <code>params</code> function to grab all parameters at once. We can easily penalise everything with <code>sum(norm, params)</code>.</p><pre><code class="language-julia">julia> params(m)
|
||
2-element Array{Any,1}:
|
||
param([0.355408 0.533092; … 0.430459 0.171498])
|
||
param([0.0, 0.0, 0.0, 0.0, 0.0])
|
||
|
||
julia> sum(norm, params(m))
|
||
26.01749952921026</code></pre><p>Here's a larger example with a multi-layer perceptron.</p><pre><code class="language-julia">m = Chain(
|
||
Dense(28^2, 128, relu),
|
||
Dense(128, 32, relu),
|
||
Dense(32, 10), softmax)
|
||
|
||
loss(x, y) = crossentropy(m(x), y) + sum(norm, params(m))
|
||
|
||
loss(rand(28^2), rand(10))</code></pre><p>One can also easily add per-layer regularisation via the <code>activations</code> function:</p><pre><code class="language-julia">julia> using Flux: activations
|
||
|
||
julia> c = Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
|
||
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
|
||
|
||
julia> activations(c, rand(10))
|
||
3-element Array{Any,1}:
|
||
Float32[0.84682214, 0.6704139, 0.42177814, 0.257832, 0.36255655]
|
||
Float32[0.1501253, 0.073269576]
|
||
Float32[0.5192045, 0.48079553]
|
||
|
||
julia> sum(norm, ans)
|
||
2.1166067f0</code></pre><article class="docstring"><header><a class="docstring-binding" id="Flux.activations" href="#Flux.activations"><code>Flux.activations</code></a> — <span class="docstring-category">Function</span></header><section><div><pre><code class="language-julia">activations(c::Chain, input)</code></pre><p>Calculate the forward results of each layers in Chain <code>c</code> with <code>input</code> as model input.</p></div><a class="docs-sourcelink" target="_blank" href="https://github.com/FluxML/Flux.jl/blob/ddd0f4e747347555894f71ae275ac3906fc87b9e/src/layers/basic.jl#L67-L71">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../recurrence/">« Recurrence</a><a class="docs-footer-nextpage" href="../layers/">Model Reference »</a></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> on <span class="colophon-date" title="Wednesday 27 May 2020 11:52">Wednesday 27 May 2020</span>. Using Julia version 1.3.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
|