Flux.jl/src/cuda/curnn.jl
2020-01-29 12:15:41 +01:00

91 lines
3.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import ..Flux: Flux, relu
using CuArrays.CUDAnative
CuRNN{T} = Flux.RNNCell{<:Union{typeof(tanh),typeof(relu)},<:CuArray{T,2},<:CuArray{T,1}}
CuGRU{T} = Flux.GRUCell{<:CuArray{T,2},<:CuArray{T,1}}
CuLSTM{T} = Flux.LSTMCell{<:CuArray{T,2},<:CuArray{T,1}}
CuRNNs{T} = Union{CuRNN{T},CuGRU{T},CuLSTM{T}}
function CUDNN.RNNDesc(m::CuRNNs{T}) where T
h, i = length(m.h), size(m.Wi, 2)
mode = m isa CuRNN ?
(m.σ == tanh ? CUDNN.CUDNN_RNN_TANH : CUDNN.CUDNN_RNN_RELU) :
m isa CuGRU ? CUDNN.CUDNN_GRU : CUDNN.CUDNN_LSTM
r = CUDNN.RNNDesc{T}(mode, i, h)
return r
end
const descs = WeakKeyDict()
function desc(rnn)
d = haskey(descs, rnn) ? descs[rnn] : (descs[rnn] = CUDNN.RNNDesc(rnn))
CUDNN.setweights!(d, rnn.Wi, rnn.Wh, rnn.b)
return d
end
import Zygote
using Zygote: @adjoint
function (m::CuRNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h = CUDNN.forward(desc(m), x, h)
return h, y
end
function (m::CuGRU{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h = CUDNN.forward(desc(m), x, h)
return h, y
end
function (m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
y, h, c = CUDNN.forward(desc(m), x, h[1], h[2])
return (h, c), y
end
(m::CuRNN{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
(m::CuGRU{T})(h::CuArray{T}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
(m::CuLSTM{T})(h::NTuple{2,CuArray{T}}, x) where T <: Union{Float32,Float64} = m(h, CuArray{T}(x))
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val(ndims(x))))
unbroadcast(x::AbstractArray, Δ) =
size(x) == size(Δ) ? Δ :
length(x) == length(Δ) ? trim(x, Δ) :
trim(x, sum(Δ, dims = ntuple(i -> size(x, i) == 1 ? i : ndims(Δ)+1, Val(ndims(Δ)))))
coerce_cuda(x::Union{CuArray,Nothing}) = x
coerce_cuda(x::Tuple) = coerce_cuda.(x)
coerce_cuda(x::AbstractArray) = x .+ CuArrays.fill(0)
function struct_grad!(cx::Zygote.Context, x, )
for f in fieldnames(typeof(x))
Zygote.accum_param(cx, getfield(x, f), getfield(, f))
end
dx = Zygote.grad_mut(cx, x)
dx[] = Zygote.accum(dx[], )
return dx
end
for RNN in (CuRNN, CuGRU)
@eval @adjoint function (m::$RNN{T})(h::CuArray{T}, x::CuArray{T}) where T <: Union{Float32,Float64}
(y, ho), back = CUDNN.pullback(desc(m), x, h)
(ho, y), function (Δ)
dho, dy = coerce_cuda(Δ) # Support FillArrays etc.
= back(dy, dho)
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(.Wi),Wh=transpose(.Wh),b=.b,h=nothing))
(dm, unbroadcast(h, .h), .x)
end
end
end
@adjoint function (m::CuLSTM)((h, c)::Tuple{CuArray{T},CuArray{T}}, x::CuArray{T}) where T <: Union{Float32,Float64}
(y, ho, co), back = CUDNN.pullback(desc(m), x, h, c)
((ho, co), y), function (Δ)
dhc, dy = coerce_cuda(Δ) # Support FillArrays etc.
dho, dco = dhc === nothing ? (nothing, nothing) : dhc
= back(dy, dho, dco)
dm = struct_grad!(__context__, m, (σ=nothing,Wi=transpose(.Wi),Wh=transpose(.Wh),b=.b,h=nothing,c=nothing))
(dm, (unbroadcast(h, .h), unbroadcast(c, .c)), .x)
end
end