45 lines
1.1 KiB
Julia
45 lines
1.1 KiB
Julia
using TensorFlow
|
|
Flux.loadtf()
|
|
|
|
@testset "TensorFlow" begin
|
|
|
|
xs, ys = rand(1, 20), rand(1, 20)
|
|
d = Affine(20, 10)
|
|
|
|
dt = tf(d)
|
|
@test d(xs) ≈ dt(xs)
|
|
|
|
test_tupleio(tf)
|
|
test_recurrence(tf)
|
|
test_stacktrace(tf)
|
|
test_anon(tf)
|
|
|
|
@testset "Tensor interface" begin
|
|
sess = TensorFlow.Session()
|
|
X = placeholder(Float32)
|
|
Y = Flux.TF.astensor(d, X)
|
|
run(sess, global_variables_initializer())
|
|
|
|
@test run(sess, Y, Dict(X=>xs)) ≈ d(xs)
|
|
end
|
|
|
|
@testset "Ops" begin
|
|
A = randn(Float32,(5,5))
|
|
u,s,v = tf(@net x -> svd(x))(A)
|
|
@test A ≈ u*diagm(s)*transpose(v)
|
|
@test tf(@net x -> inv(x))(A) ≈ inv(A)
|
|
@test tf(@net x -> det(x))(A) ≈ det(A)
|
|
A = randn(Float32,(6,3))
|
|
@test tf(@net x -> transpose(x))(A) ≈ transpose(A)
|
|
A = randn(Float32,(6,3,2))
|
|
@test tf(@net (x,y) -> permutedims(x,y))(A,[3,2,1]) ≈ permutedims(A,[3,2,1])
|
|
A1 = randn(Float32,(4,1))
|
|
A2 = randn(Float32,(4,1))
|
|
@test tf(@net (x,y) -> cat(2,x,y))(A1,A2) ≈ cat(2,A1,A2)
|
|
@test tf(@net x -> length(x))(A1) == length(A1)
|
|
A = randn(Float32,(5,5))
|
|
@test tf(@net x -> diag(x))(A) ≈ diag(A)
|
|
end
|
|
|
|
end
|