Flux.jl/src/data/mnist.jl
janEbert ab86e350f2 Improve docstrings
Improvements like...
   - fixing typos,
   - removing trailing and double whitespaces,
   - using `jldoctest` blocks where applicable,
   - fixing, updating or correctly setting up existing doctests,
   - improving consistency (for example, always use "# Examples" instead
     of other variants),
   - removing empty lines between docstrings and functions,
   - instead of mentioning keywords, put them into the docstring,
   - adding some missing but useful keywords,
   - adding references (`@ref`),
   - using LaTeX math where applicable, and
   - linking papers.

Debatable stuff that is untouched:
   - BE/AE s/z irregularities ("normalise" versus "normalize") since
     most papers use the AE version while the Flux source code was
     written with BE spelling.
   - Names of normalization functions are capitalized
     ("Batch Normalization" instead of "batch normalization").
2020-04-04 18:16:46 +02:00

117 lines
3.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module MNIST
using CodecZlib, Colors
using ..Data: download_and_verify
const Gray = Colors.Gray{Colors.N0f8}
const dir = joinpath(@__DIR__, "../../deps/mnist")
function gzopen(f, file)
open(file) do io
f(GzipDecompressorStream(io))
end
end
function load()
mkpath(dir)
cd(dir) do
for (file, hash) in [("train-images-idx3-ubyte", "440fcabf73cc546fa21475e81ea370265605f56be210a4024d2ca8f203523609"),
("train-labels-idx1-ubyte", "3552534a0a558bbed6aed32b30c495cca23d567ec52cac8be1a0730e8010255c"),
("t10k-images-idx3-ubyte" , "8d422c7b0a1c1c79245a5bcf07fe86e33eeafee792b84584aec276f5a2dbc4e6"),
("t10k-labels-idx1-ubyte" , "f7ae60f92e00ec6debd23a6088c31dbd2371eca3ffa0defaefb259924204aec6")]
isfile(file) && continue
@info "Downloading MNIST dataset"
download_and_verify("https://cache.julialang.org/http://yann.lecun.com/exdb/mnist/$file.gz", "$file.gz", hash)
open(file, "w") do io
write(io, gzopen(read, "$file.gz"))
end
end
end
end
const IMAGEOFFSET = 16
const LABELOFFSET = 8
const NROWS = 28
const NCOLS = 28
const TRAINIMAGES = joinpath(dir, "train-images-idx3-ubyte")
const TRAINLABELS = joinpath(dir, "train-labels-idx1-ubyte")
const TESTIMAGES = joinpath(dir, "t10k-images-idx3-ubyte")
const TESTLABELS = joinpath(dir, "t10k-labels-idx1-ubyte")
function imageheader(io::IO)
magic_number = bswap(read(io, UInt32))
total_items = bswap(read(io, UInt32))
nrows = bswap(read(io, UInt32))
ncols = bswap(read(io, UInt32))
return magic_number, Int(total_items), Int(nrows), Int(ncols)
end
function labelheader(io::IO)
magic_number = bswap(read(io, UInt32))
total_items = bswap(read(io, UInt32))
return magic_number, Int(total_items)
end
function rawimage(io::IO)
img = Array{Gray}(undef, NCOLS, NROWS)
for i in 1:NCOLS, j in 1:NROWS
img[i, j] = reinterpret(Colors.N0f8, read(io, UInt8))
end
return img
end
function rawimage(io::IO, index::Integer)
seek(io, IMAGEOFFSET + NROWS * NCOLS * (index - 1))
return rawimage(io)
end
rawlabel(io::IO) = Int(read(io, UInt8))
function rawlabel(io::IO, index::Integer)
seek(io, LABELOFFSET + (index - 1))
return rawlabel(io)
end
getfeatures(io::IO, index::Integer) = vec(getimage(io, index))
"""
images()
images(:test)
Load the MNIST images.
Each image is a 28×28 array of `Gray` colour values
(see [Colors.jl](https://github.com/JuliaGraphics/Colors.jl)).
Return the 60,000 training images by default; pass `:test` to retrieve the
10,000 test images.
"""
function images(set = :train)
load()
io = IOBuffer(read(set == :train ? TRAINIMAGES : TESTIMAGES))
_, N, nrows, ncols = imageheader(io)
[rawimage(io) for _ in 1:N]
end
"""
labels()
labels(:test)
Load the labels corresponding to each of the images returned from [`images()`](@ref).
Each label is a number from 0-9.
Return the 60,000 training labels by default; pass `:test` to retrieve the
10,000 test labels.
"""
function labels(set = :train)
load()
io = IOBuffer(read(set == :train ? TRAINLABELS : TESTLABELS))
_, N = labelheader(io)
[rawlabel(io) for _ = 1:N]
end
end # module