331 lines
11 KiB
Julia
331 lines
11 KiB
Julia
using NNlib: conv, ∇conv_data, depthwiseconv
|
||
|
||
expand(N, i::Tuple) = i
|
||
expand(N, i::Integer) = ntuple(_ -> i, N)
|
||
"""
|
||
Conv(size, in=>out)
|
||
Conv(size, in=>out, relu)
|
||
|
||
Standard convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
|
||
Example: Applying Conv layer to a 1-channel input using a 2x2 window size,
|
||
giving us a 16-channel output. Output is activated with ReLU.
|
||
|
||
size = (2,2)
|
||
in = 1
|
||
out = 16
|
||
Conv((2, 2), 1=>16, relu)
|
||
|
||
Data should be stored in WHCN order (width, height, # channels, # batches).
|
||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||
and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct Conv{N,M,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
function Conv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||
stride = expand(Val(N-2), stride)
|
||
pad = expand(Val(2*(N-2)), pad)
|
||
dilation = expand(Val(N-2), dilation)
|
||
return Conv(σ, w, b, stride, pad, dilation)
|
||
end
|
||
|
||
Conv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||
Conv(init(k..., ch...), zeros(ch[2]), σ,
|
||
stride = stride, pad = pad, dilation = dilation)
|
||
|
||
@functor Conv
|
||
|
||
function (c::Conv)(x::AbstractArray)
|
||
# TODO: breaks gpu broadcast :(
|
||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||
σ.(conv(x, c.weight, cdims) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::Conv)
|
||
print(io, "Conv(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::Conv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
|
||
"""
|
||
ConvTranspose(size, in=>out)
|
||
ConvTranspose(size, in=>out, relu)
|
||
|
||
Standard convolutional transpose layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
|
||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct ConvTranspose{N,M,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
function ConvTranspose(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||
stride = expand(Val(N-2), stride)
|
||
pad = expand(Val(2*(N-2)), pad)
|
||
dilation = expand(Val(N-2), dilation)
|
||
return ConvTranspose(σ, w, b, stride, pad, dilation)
|
||
end
|
||
|
||
ConvTranspose(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||
ConvTranspose(init(k..., reverse(ch)...), zeros(ch[2]), σ,
|
||
stride = stride, pad = pad, dilation = dilation)
|
||
|
||
@functor ConvTranspose
|
||
|
||
function conv_transpose_dims(c::ConvTranspose, x::AbstractArray)
|
||
# Calculate size of "input", from ∇conv_data()'s perspective...
|
||
combined_pad = (c.pad[1:2:end] .+ c.pad[2:2:end])
|
||
I = (size(x)[1:end-2] .- 1).*c.stride .+ 1 .+ (size(c.weight)[1:end-2] .- 1).*c.dilation .- combined_pad
|
||
C_in = size(c.weight)[end-1]
|
||
batch_size = size(x)[end]
|
||
# Create DenseConvDims() that looks like the corresponding conv()
|
||
return DenseConvDims((I..., C_in, batch_size), size(c.weight);
|
||
stride=c.stride,
|
||
padding=c.pad,
|
||
dilation=c.dilation,
|
||
)
|
||
end
|
||
|
||
function (c::ConvTranspose)(x::AbstractArray)
|
||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
cdims = conv_transpose_dims(c, x)
|
||
return σ.(∇conv_data(x, c.weight, cdims) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::ConvTranspose)
|
||
print(io, "ConvTranspose(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)), "=>", size(l.weight, ndims(l.weight)-1))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::ConvTranspose{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
"""
|
||
DepthwiseConv(size, in=>out)
|
||
DepthwiseConv(size, in=>out, relu)
|
||
|
||
Depthwise convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
Note that `out` must be an integer multiple of `in`.
|
||
|
||
Data should be stored in WHCN order. In other words, a 100×100 RGB image would
|
||
be a `100×100×3` array, and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct DepthwiseConv{N,M,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
function DepthwiseConv(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||
stride = expand(Val(N-2), stride)
|
||
pad = expand(Val(2*(N-2)), pad)
|
||
dilation = expand(Val(N-2), dilation)
|
||
return DepthwiseConv(σ, w, b, stride, pad, dilation)
|
||
end
|
||
|
||
function DepthwiseConv(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N
|
||
@assert ch[2] % ch[1] == 0 "Output channels must be integer multiple of input channels"
|
||
return DepthwiseConv(
|
||
init(k..., div(ch[2], ch[1]), ch[1]),
|
||
zeros(ch[2]),
|
||
σ;
|
||
stride = stride,
|
||
pad = pad,
|
||
dilation = dilation
|
||
)
|
||
end
|
||
|
||
@functor DepthwiseConv
|
||
|
||
function (c::DepthwiseConv)(x)
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
cdims = DepthwiseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||
σ.(depthwiseconv(x, c.weight, cdims) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::DepthwiseConv)
|
||
print(io, "DepthwiseConv(", size(l.weight)[1:end-2])
|
||
print(io, ", ", size(l.weight)[end], "=>", prod(size(l.weight)[end-1:end]))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::DepthwiseConv{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
|
||
"""
|
||
CrossCor(size, in=>out)
|
||
CrossCor(size, in=>out, relu)
|
||
|
||
Standard cross convolutional layer. `size` should be a tuple like `(2, 2)`.
|
||
`in` and `out` specify the number of input and output channels respectively.
|
||
|
||
Example: Applying CrossCor layer to a 1-channel input using a 2x2 window size,
|
||
giving us a 16-channel output. Output is activated with ReLU.
|
||
|
||
size = (2,2)
|
||
in = 1
|
||
out = 16
|
||
CrossCor((2, 2), 1=>16, relu)
|
||
|
||
Data should be stored in WHCN order (width, height, # channels, # batches).
|
||
In other words, a 100×100 RGB image would be a `100×100×3×1` array,
|
||
and a batch of 50 would be a `100×100×3×50` array.
|
||
|
||
Takes the keyword arguments `pad`, `stride` and `dilation`.
|
||
"""
|
||
struct CrossCor{N,M,F,A,V}
|
||
σ::F
|
||
weight::A
|
||
bias::V
|
||
stride::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
dilation::NTuple{N,Int}
|
||
end
|
||
|
||
function CrossCor(w::AbstractArray{T,N}, b::AbstractVector{T}, σ = identity;
|
||
stride = 1, pad = 0, dilation = 1) where {T,N}
|
||
stride = expand(Val(N-2), stride)
|
||
pad = expand(Val(2*(N-2)), pad)
|
||
dilation = expand(Val(N-2), dilation)
|
||
return CrossCor(σ, w, b, stride, pad, dilation)
|
||
end
|
||
|
||
CrossCor(k::NTuple{N,Integer}, ch::Pair{<:Integer,<:Integer}, σ = identity;
|
||
init = glorot_uniform, stride = 1, pad = 0, dilation = 1) where N =
|
||
CrossCor(init(k..., ch...), zeros(ch[2]), σ,
|
||
stride = stride, pad = pad, dilation = dilation)
|
||
|
||
@functor CrossCor
|
||
|
||
function crosscor(x, w, ddims::DenseConvDims)
|
||
ddims = DenseConvDims(ddims, F=true)
|
||
return conv(x, w, ddims)
|
||
end
|
||
|
||
function (c::CrossCor)(x::AbstractArray)
|
||
# TODO: breaks gpu broadcast :(
|
||
# ndims(x) == ndims(c.weight)-1 && return squeezebatch(c(reshape(x, size(x)..., 1)))
|
||
σ, b = c.σ, reshape(c.bias, map(_->1, c.stride)..., :, 1)
|
||
cdims = DenseConvDims(x, c.weight; stride=c.stride, padding=c.pad, dilation=c.dilation)
|
||
σ.(crosscor(x, c.weight, cdims) .+ b)
|
||
end
|
||
|
||
function Base.show(io::IO, l::CrossCor)
|
||
print(io, "CrossCor(", size(l.weight)[1:ndims(l.weight)-2])
|
||
print(io, ", ", size(l.weight, ndims(l.weight)-1), "=>", size(l.weight, ndims(l.weight)))
|
||
l.σ == identity || print(io, ", ", l.σ)
|
||
print(io, ")")
|
||
end
|
||
|
||
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{T}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
invoke(a, Tuple{AbstractArray}, x)
|
||
|
||
(a::CrossCor{<:Any,<:Any,W})(x::AbstractArray{<:Real}) where {T <: Union{Float32,Float64}, W <: AbstractArray{T}} =
|
||
a(T.(x))
|
||
|
||
"""
|
||
MaxPool(k)
|
||
|
||
Max pooling layer. `k` stands for the size of the window for each dimension of the input.
|
||
|
||
Takes the keyword arguments `pad` and `stride`.
|
||
"""
|
||
struct MaxPool{N,M}
|
||
k::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
stride::NTuple{N,Int}
|
||
end
|
||
|
||
function MaxPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
|
||
stride = expand(Val(N), stride)
|
||
pad = expand(Val(2*N), pad)
|
||
|
||
return MaxPool(k, pad, stride)
|
||
end
|
||
|
||
function (m::MaxPool)(x)
|
||
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
|
||
return maxpool(x, pdims)
|
||
end
|
||
|
||
function Base.show(io::IO, m::MaxPool)
|
||
print(io, "MaxPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||
end
|
||
|
||
"""
|
||
MeanPool(k)
|
||
|
||
Mean pooling layer. `k` stands for the size of the window for each dimension of the input.
|
||
|
||
Takes the keyword arguments `pad` and `stride`.
|
||
"""
|
||
struct MeanPool{N,M}
|
||
k::NTuple{N,Int}
|
||
pad::NTuple{M,Int}
|
||
stride::NTuple{N,Int}
|
||
end
|
||
|
||
function MeanPool(k::NTuple{N,Integer}; pad = 0, stride = k) where N
|
||
stride = expand(Val(N), stride)
|
||
pad = expand(Val(2*N), pad)
|
||
return MeanPool(k, pad, stride)
|
||
end
|
||
|
||
function (m::MeanPool)(x)
|
||
pdims = PoolDims(x, m.k; padding=m.pad, stride=m.stride)
|
||
return meanpool(x, pdims)
|
||
end
|
||
|
||
function Base.show(io::IO, m::MeanPool)
|
||
print(io, "MeanPool(", m.k, ", pad = ", m.pad, ", stride = ", m.stride, ")")
|
||
end
|