Flux.jl/test/backend.jl
2017-02-21 15:46:38 +00:00

38 lines
736 B
Julia

xs = rand(20)
d = Affine(20, 10)
# MXNet
@mxonly let dm = mxnet(d, (20, 1))
@test d(xs) dm(xs)
end
@mxonly let
# TODO: test run
using MXNet
f = mx.FeedForward(Chain(d, softmax))
@test mx.infer_shape(f.arch, data = (20, 1))[2] == [(10, 1)]
m = Chain(Input(28,28), Conv2D((5,5), out = 3), MaxPool((2,2)),
flatten, Affine(1587, 10), softmax)
f = mx.FeedForward(m)
@test mx.infer_shape(f.arch, data = (20, 20, 5, 1))[2] == [(10, 1)]
end
# TensorFlow
@tfonly let dt = tf(d)
@test d(xs) dt(xs)
end
@tfonly let
using TensorFlow
sess = TensorFlow.Session()
X = placeholder(Float32)
Y = Tensor(d, X)
run(sess, initialize_all_variables())
@test run(sess, Y, Dict(X=>xs')) d(xs)'
end