41 lines
5.3 KiB
HTML
41 lines
5.3 KiB
HTML
<!DOCTYPE html>
|
||
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>One-Hot Encoding · Flux</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
|
||
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
|
||
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
|
||
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
|
||
|
||
ga('create', 'UA-36890222-9', 'auto');
|
||
ga('send', 'pageview');
|
||
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL="../.."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../../assets/documenter.js"></script><script src="../../siteinfo.js"></script><script src="../../../versions.js"></script><link href="../../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../../assets/flux.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><h1>Flux</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" id="search-form" action="../../search/"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../../">Home</a></li><li><span class="toctext">Building Models</span><ul><li><a class="toctext" href="../../models/basics/">Basics</a></li><li><a class="toctext" href="../../models/recurrence/">Recurrence</a></li><li><a class="toctext" href="../../models/regularisation/">Regularisation</a></li><li><a class="toctext" href="../../models/layers/">Model Reference</a></li></ul></li><li><span class="toctext">Training Models</span><ul><li><a class="toctext" href="../../training/optimisers/">Optimisers</a></li><li><a class="toctext" href="../../training/training/">Training</a></li></ul></li><li class="current"><a class="toctext" href>One-Hot Encoding</a><ul class="internal"><li><a class="toctext" href="#Batches-1">Batches</a></li></ul></li><li><a class="toctext" href="../../gpu/">GPU Support</a></li><li><a class="toctext" href="../../saving/">Saving & Loading</a></li><li><a class="toctext" href="../../performance/">Performance Tips</a></li><li><span class="toctext">Internals</span><ul><li><a class="toctext" href="../../internals/tracker/">Backpropagation</a></li></ul></li><li><a class="toctext" href="../../community/">Community</a></li></ul></nav><article id="docs"><header><nav><ul><li><a href>One-Hot Encoding</a></li></ul><a class="edit-page" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/data/onehot.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>One-Hot Encoding</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="One-Hot-Encoding-1" href="#One-Hot-Encoding-1">One-Hot Encoding</a></h1><p>It's common to encode categorical variables (like <code>true</code>, <code>false</code> or <code>cat</code>, <code>dog</code>) in "one-of-k" or <a href="https://en.wikipedia.org/wiki/One-hot">"one-hot"</a> form. Flux provides the <code>onehot</code> function to make this easy.</p><pre><code class="language-none">julia> using Flux: onehot, onecold
|
||
|
||
julia> onehot(:b, [:a, :b, :c])
|
||
3-element Flux.OneHotVector:
|
||
false
|
||
true
|
||
false
|
||
|
||
julia> onehot(:c, [:a, :b, :c])
|
||
3-element Flux.OneHotVector:
|
||
false
|
||
false
|
||
true</code></pre><p>The inverse is <code>onecold</code> (which can take a general probability distribution, as well as just booleans).</p><pre><code class="language-julia">julia> onecold(ans, [:a, :b, :c])
|
||
:c
|
||
|
||
julia> onecold([true, false, false], [:a, :b, :c])
|
||
:a
|
||
|
||
julia> onecold([0.3, 0.2, 0.5], [:a, :b, :c])
|
||
:c</code></pre><h2><a class="nav-anchor" id="Batches-1" href="#Batches-1">Batches</a></h2><p><code>onehotbatch</code> creates a batch (matrix) of one-hot vectors, and <code>onecold</code> treats matrices as batches.</p><pre><code class="language-julia">julia> using Flux: onehotbatch
|
||
|
||
julia> onehotbatch([:b, :a, :b], [:a, :b, :c])
|
||
3×3 Flux.OneHotMatrix:
|
||
false true false
|
||
true false true
|
||
false false false
|
||
|
||
julia> onecold(ans, [:a, :b, :c])
|
||
3-element Array{Symbol,1}:
|
||
:b
|
||
:a
|
||
:b</code></pre><p>Note that these operations returned <code>OneHotVector</code> and <code>OneHotMatrix</code> rather than <code>Array</code>s. <code>OneHotVector</code>s behave like normal vectors but avoid any unnecessary cost compared to using an integer index directly. For example, multiplying a matrix with a one-hot vector simply slices out the relevant row of the matrix under the hood.</p><footer><hr/><a class="previous" href="../../training/training/"><span class="direction">Previous</span><span class="title">Training</span></a><a class="next" href="../../gpu/"><span class="direction">Next</span><span class="title">GPU Support</span></a></footer></article></body></html>
|