219 lines
6.4 KiB
Julia
219 lines
6.4 KiB
Julia
using Flux, Test
|
||
using Flux: maxpool, meanpool
|
||
using Flux: gradient
|
||
|
||
@testset "Pooling" begin
|
||
x = randn(Float32, 10, 10, 3, 2)
|
||
gmp = GlobalMaxPool()
|
||
@test size(gmp(x)) == (1, 1, 3, 2)
|
||
gmp = GlobalMeanPool()
|
||
@test size(gmp(x)) == (1, 1, 3, 2)
|
||
mp = MaxPool((2, 2))
|
||
@test mp(x) == maxpool(x, PoolDims(x, 2))
|
||
mp = MeanPool((2, 2))
|
||
@test mp(x) == meanpool(x, PoolDims(x, 2))
|
||
end
|
||
|
||
@testset "CNN" begin
|
||
r = zeros(Float32, 28, 28, 1, 5)
|
||
m = Chain(
|
||
Conv((2, 2), 1=>16, relu),
|
||
MaxPool((2,2)),
|
||
Conv((2, 2), 16=>8, relu),
|
||
MaxPool((2,2)),
|
||
x -> reshape(x, :, size(x, 4)),
|
||
Dense(288, 10), softmax)
|
||
|
||
@test size(m(r)) == (10, 5)
|
||
|
||
# Test bias switch
|
||
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3))
|
||
ip = zeros(Float32, 28,28,1,1)
|
||
|
||
op = bias(ip)
|
||
@test sum(op) == prod(size(op))
|
||
|
||
bias = Conv((2,2), 1=>3, bias = Flux.Zeros())
|
||
op = bias(ip)
|
||
@test sum(op) === 0.f0
|
||
gs = gradient(() -> sum(bias(ip)), Flux.params(bias))
|
||
@test gs[bias.bias] == nothing
|
||
|
||
# Train w/o bias and make sure no convergence happens
|
||
# when only bias can be converged
|
||
bias = Conv((2, 2), 1=>3, bias = Flux.Zeros());
|
||
ip = zeros(Float32, 28,28,1,1)
|
||
op = zeros(Float32, 27,27,3,1) .+ 2.f0
|
||
opt = Descent()
|
||
|
||
for _ = 1:10^3
|
||
gs = gradient(params(bias)) do
|
||
Flux.mse(bias(ip), op)
|
||
end
|
||
Flux.Optimise.update!(opt, params(bias), gs)
|
||
end
|
||
|
||
@test Flux.mse(bias(ip), op) ≈ 4.f0
|
||
end
|
||
|
||
@testset "asymmetric padding" begin
|
||
r = ones(Float32, 28, 28, 1, 1)
|
||
m = Conv((3, 3), 1=>1, relu; pad=(0,1,1,2))
|
||
m.weight[:] .= 1.0
|
||
m.bias[:] .= 0.0
|
||
y_hat = m(r)[:,:,1,1]
|
||
@test size(y_hat) == (27, 29)
|
||
@test y_hat[1, 1] ≈ 6.0
|
||
@test y_hat[2, 2] ≈ 9.0
|
||
@test y_hat[end, 1] ≈ 4.0
|
||
@test y_hat[1, end] ≈ 3.0
|
||
@test y_hat[1, end-1] ≈ 6.0
|
||
@test y_hat[end, end] ≈ 2.0
|
||
end
|
||
|
||
@testset "Depthwise Conv" begin
|
||
r = zeros(Float32, 28, 28, 3, 5)
|
||
m1 = DepthwiseConv((2, 2), 3=>15)
|
||
@test size(m1(r), 3) == 15
|
||
|
||
m3 = DepthwiseConv((2, 3), 3=>9)
|
||
@test size(m3(r), 3) == 9
|
||
|
||
# Test that we cannot ask for non-integer multiplication factors
|
||
@test_throws AssertionError DepthwiseConv((2,2), 3=>10)
|
||
end
|
||
|
||
@testset "ConvTranspose" begin
|
||
x = zeros(Float32, 28, 28, 1, 1)
|
||
y = Conv((3,3), 1 => 1)(x)
|
||
x_hat = ConvTranspose((3, 3), 1 => 1)(y)
|
||
@test size(x_hat) == size(x)
|
||
|
||
m = ConvTranspose((3,3), 1=>1)
|
||
# Test that the gradient call does not throw: #900
|
||
@test gradient(()->sum(m(x)), params(m)) isa Flux.Zygote.Grads
|
||
end
|
||
|
||
@testset "CrossCor" begin
|
||
x = rand(Float32, 28, 28, 1, 1)
|
||
w = rand(2,2,1,1)
|
||
y = CrossCor(w, [0.0])
|
||
|
||
@test isapprox(sum(w .* x[1:2, 1:2, :, :]), y(x)[1, 1, 1, 1], rtol=1e-7)
|
||
|
||
r = zeros(Float32, 28, 28, 1, 5)
|
||
m = Chain(
|
||
CrossCor((2, 2), 1=>16, relu),
|
||
MaxPool((2,2)),
|
||
CrossCor((2, 2), 16=>8, relu),
|
||
MaxPool((2,2)),
|
||
x -> reshape(x, :, size(x, 4)),
|
||
Dense(288, 10), softmax)
|
||
|
||
@test size(m(r)) == (10, 5)
|
||
@test y(x) != Conv(w, [0.0])(x)
|
||
@test CrossCor(w[end:-1:1, end:-1:1, :, :], [0.0])(x) == Conv(w, [0.0])(x)
|
||
end
|
||
|
||
@testset "Conv with non quadratic window #700" begin
|
||
data = zeros(Float32, 7,7,1,1)
|
||
data[4,4,1,1] = 1
|
||
|
||
l = Conv((3,3), 1=>1)
|
||
expected = zeros(eltype(l.weight),5,5,1,1)
|
||
expected[2:end-1,2:end-1,1,1] = l.weight
|
||
@test expected ≈ l(data)
|
||
|
||
l = Conv((3,1), 1=>1)
|
||
expected = zeros(eltype(l.weight),5,7,1,1)
|
||
expected[2:end-1,4,1,1] = l.weight
|
||
@test expected ≈ l(data)
|
||
|
||
l = Conv((1,3), 1=>1)
|
||
expected = zeros(eltype(l.weight),7,5,1,1)
|
||
expected[4,2:end-1,1,1] = l.weight
|
||
@test expected ≈ l(data)
|
||
|
||
@test begin
|
||
# we test that the next expression does not throw
|
||
randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ)
|
||
true
|
||
end
|
||
end
|
||
|
||
@testset "conv output dimensions" begin
|
||
m = Conv((3, 3), 3 => 16)
|
||
@test Flux.outdims(m, (10, 10)) == (8, 8)
|
||
m = Conv((3, 3), 3 => 16; stride = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (2, 2)
|
||
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (4, 4)
|
||
|
||
m = ConvTranspose((3, 3), 3 => 16)
|
||
@test Flux.outdims(m, (8, 8)) == (10, 10)
|
||
m = ConvTranspose((3, 3), 3 => 16; stride = 2)
|
||
@test Flux.outdims(m, (2, 2)) == (5, 5)
|
||
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
|
||
@test Flux.outdims(m, (4, 4)) == (5, 5)
|
||
|
||
m = DepthwiseConv((3, 3), 3 => 6)
|
||
@test Flux.outdims(m, (10, 10)) == (8, 8)
|
||
m = DepthwiseConv((3, 3), 3 => 6; stride = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (2, 2)
|
||
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3, dilation = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (4, 4)
|
||
|
||
m = CrossCor((3, 3), 3 => 16)
|
||
@test Flux.outdims(m, (10, 10)) == (8, 8)
|
||
m = CrossCor((3, 3), 3 => 16; stride = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (2, 2)
|
||
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
|
||
@test Flux.outdims(m, (5, 5)) == (4, 4)
|
||
|
||
m = MaxPool((2, 2))
|
||
@test Flux.outdims(m, (10, 10)) == (5, 5)
|
||
m = MaxPool((2, 2); stride = 1)
|
||
@test Flux.outdims(m, (5, 5)) == (4, 4)
|
||
m = MaxPool((2, 2); stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
|
||
m = MeanPool((2, 2))
|
||
@test Flux.outdims(m, (10, 10)) == (5, 5)
|
||
m = MeanPool((2, 2); stride = 1)
|
||
@test Flux.outdims(m, (5, 5)) == (4, 4)
|
||
m = MeanPool((2, 2); stride = 2, pad = 3)
|
||
@test Flux.outdims(m, (5, 5)) == (5, 5)
|
||
end
|
||
|
||
@testset "$ltype SamePad kernelsize $k" for ltype in (Conv, ConvTranspose, DepthwiseConv, CrossCor), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
|
||
data = ones(Float32, (k .+ 3)..., 1,1)
|
||
l = ltype(k, 1=>1, pad=SamePad())
|
||
@test size(l(data)) == size(data)
|
||
|
||
l = ltype(k, 1=>1, pad=SamePad(), dilation = k .÷ 2)
|
||
@test size(l(data)) == size(data)
|
||
|
||
stride = 3
|
||
l = ltype(k, 1=>1, pad=SamePad(), stride = stride)
|
||
if ltype == ConvTranspose
|
||
@test size(l(data))[1:end-2] == stride .* size(data)[1:end-2] .- stride .+ 1
|
||
else
|
||
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ stride)
|
||
end
|
||
end
|
||
|
||
@testset "$ltype SamePad windowsize $k" for ltype in (MeanPool, MaxPool), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
|
||
data = ones(Float32, (k .+ 3)..., 1,1)
|
||
|
||
l = ltype(k, pad=SamePad())
|
||
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ k)
|
||
end
|