Flux.jl/test/layers/conv.jl

219 lines
6.4 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Flux, Test
using Flux: maxpool, meanpool
using Flux: gradient
@testset "Pooling" begin
x = randn(Float32, 10, 10, 3, 2)
gmp = GlobalMaxPool()
@test size(gmp(x)) == (1, 1, 3, 2)
gmp = GlobalMeanPool()
@test size(gmp(x)) == (1, 1, 3, 2)
mp = MaxPool((2, 2))
@test mp(x) == maxpool(x, PoolDims(x, 2))
mp = MeanPool((2, 2))
@test mp(x) == meanpool(x, PoolDims(x, 2))
end
@testset "CNN" begin
r = zeros(Float32, 28, 28, 1, 5)
m = Chain(
Conv((2, 2), 1=>16, relu),
MaxPool((2,2)),
Conv((2, 2), 16=>8, relu),
MaxPool((2,2)),
x -> reshape(x, :, size(x, 4)),
Dense(288, 10), softmax)
@test size(m(r)) == (10, 5)
# Test bias switch
bias = Conv(ones(Float32, 2, 2, 1, 3), ones(Float32, 3))
ip = zeros(Float32, 28,28,1,1)
op = bias(ip)
@test sum(op) == prod(size(op))
bias = Conv((2,2), 1=>3, bias = Flux.Zeros())
op = bias(ip)
@test sum(op) === 0.f0
gs = gradient(() -> sum(bias(ip)), Flux.params(bias))
@test gs[bias.bias] == nothing
# Train w/o bias and make sure no convergence happens
# when only bias can be converged
bias = Conv((2, 2), 1=>3, bias = Flux.Zeros());
ip = zeros(Float32, 28,28,1,1)
op = zeros(Float32, 27,27,3,1) .+ 2.f0
opt = Descent()
for _ = 1:10^3
gs = gradient(params(bias)) do
Flux.mse(bias(ip), op)
end
Flux.Optimise.update!(opt, params(bias), gs)
end
@test Flux.mse(bias(ip), op) 4.f0
end
@testset "asymmetric padding" begin
r = ones(Float32, 28, 28, 1, 1)
m = Conv((3, 3), 1=>1, relu; pad=(0,1,1,2))
m.weight[:] .= 1.0
m.bias[:] .= 0.0
y_hat = m(r)[:,:,1,1]
@test size(y_hat) == (27, 29)
@test y_hat[1, 1] 6.0
@test y_hat[2, 2] 9.0
@test y_hat[end, 1] 4.0
@test y_hat[1, end] 3.0
@test y_hat[1, end-1] 6.0
@test y_hat[end, end] 2.0
end
@testset "Depthwise Conv" begin
r = zeros(Float32, 28, 28, 3, 5)
m1 = DepthwiseConv((2, 2), 3=>15)
@test size(m1(r), 3) == 15
m3 = DepthwiseConv((2, 3), 3=>9)
@test size(m3(r), 3) == 9
# Test that we cannot ask for non-integer multiplication factors
@test_throws AssertionError DepthwiseConv((2,2), 3=>10)
end
@testset "ConvTranspose" begin
x = zeros(Float32, 28, 28, 1, 1)
y = Conv((3,3), 1 => 1)(x)
x_hat = ConvTranspose((3, 3), 1 => 1)(y)
@test size(x_hat) == size(x)
m = ConvTranspose((3,3), 1=>1)
# Test that the gradient call does not throw: #900
@test gradient(()->sum(m(x)), params(m)) isa Flux.Zygote.Grads
end
@testset "CrossCor" begin
x = rand(Float32, 28, 28, 1, 1)
w = rand(2,2,1,1)
y = CrossCor(w, [0.0])
@test isapprox(sum(w .* x[1:2, 1:2, :, :]), y(x)[1, 1, 1, 1], rtol=1e-7)
r = zeros(Float32, 28, 28, 1, 5)
m = Chain(
CrossCor((2, 2), 1=>16, relu),
MaxPool((2,2)),
CrossCor((2, 2), 16=>8, relu),
MaxPool((2,2)),
x -> reshape(x, :, size(x, 4)),
Dense(288, 10), softmax)
@test size(m(r)) == (10, 5)
@test y(x) != Conv(w, [0.0])(x)
@test CrossCor(w[end:-1:1, end:-1:1, :, :], [0.0])(x) == Conv(w, [0.0])(x)
end
@testset "Conv with non quadratic window #700" begin
data = zeros(Float32, 7,7,1,1)
data[4,4,1,1] = 1
l = Conv((3,3), 1=>1)
expected = zeros(eltype(l.weight),5,5,1,1)
expected[2:end-1,2:end-1,1,1] = l.weight
@test expected l(data)
l = Conv((3,1), 1=>1)
expected = zeros(eltype(l.weight),5,7,1,1)
expected[2:end-1,4,1,1] = l.weight
@test expected l(data)
l = Conv((1,3), 1=>1)
expected = zeros(eltype(l.weight),7,5,1,1)
expected[4,2:end-1,1,1] = l.weight
@test expected l(data)
@test begin
# we test that the next expression does not throw
randn(Float32, 10,10,1,1) |> Conv((6,1), 1=>1, Flux.σ)
true
end
end
@testset "conv output dimensions" begin
m = Conv((3, 3), 3 => 16)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = Conv((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = Conv((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = ConvTranspose((3, 3), 3 => 16)
@test Flux.outdims(m, (8, 8)) == (10, 10)
m = ConvTranspose((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (2, 2)) == (5, 5)
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = ConvTranspose((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (4, 4)) == (5, 5)
m = DepthwiseConv((3, 3), 3 => 6)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = DepthwiseConv((3, 3), 3 => 6; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = CrossCor((3, 3), 3 => 16)
@test Flux.outdims(m, (10, 10)) == (8, 8)
m = CrossCor((3, 3), 3 => 16; stride = 2)
@test Flux.outdims(m, (5, 5)) == (2, 2)
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = CrossCor((3, 3), 3 => 16; stride = 2, pad = 3, dilation = 2)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MaxPool((2, 2))
@test Flux.outdims(m, (10, 10)) == (5, 5)
m = MaxPool((2, 2); stride = 1)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MaxPool((2, 2); stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
m = MeanPool((2, 2))
@test Flux.outdims(m, (10, 10)) == (5, 5)
m = MeanPool((2, 2); stride = 1)
@test Flux.outdims(m, (5, 5)) == (4, 4)
m = MeanPool((2, 2); stride = 2, pad = 3)
@test Flux.outdims(m, (5, 5)) == (5, 5)
end
@testset "$ltype SamePad kernelsize $k" for ltype in (Conv, ConvTranspose, DepthwiseConv, CrossCor), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, 1=>1, pad=SamePad())
@test size(l(data)) == size(data)
l = ltype(k, 1=>1, pad=SamePad(), dilation = k 2)
@test size(l(data)) == size(data)
stride = 3
l = ltype(k, 1=>1, pad=SamePad(), stride = stride)
if ltype == ConvTranspose
@test size(l(data))[1:end-2] == stride .* size(data)[1:end-2] .- stride .+ 1
else
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ stride)
end
end
@testset "$ltype SamePad windowsize $k" for ltype in (MeanPool, MaxPool), k in ( (1,), (2,), (3,), (4,5), (6,7,8))
data = ones(Float32, (k .+ 3)..., 1,1)
l = ltype(k, pad=SamePad())
@test size(l(data))[1:end-2] == ceil.(Int, size(data)[1:end-2] ./ k)
end